|
--- |
|
license: apache-2.0 |
|
base_model: google-t5/t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: senate_bills_summary_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# senate_bills_summary_model |
|
|
|
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9099 |
|
- Rouge1: 0.2477 |
|
- Rouge2: 0.1963 |
|
- Rougel: 0.2407 |
|
- Rougelsum: 0.2406 |
|
- Gen Len: 18.9992 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 14 |
|
- eval_batch_size: 14 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 2.2318 | 1.0 | 749 | 1.9710 | 0.2475 | 0.1952 | 0.2405 | 0.2402 | 18.9985 | |
|
| 2.1782 | 2.0 | 1498 | 1.9331 | 0.2478 | 0.1959 | 0.2408 | 0.2406 | 18.9992 | |
|
| 2.1355 | 3.0 | 2247 | 1.9141 | 0.2479 | 0.1961 | 0.2409 | 0.2407 | 18.9992 | |
|
| 2.1079 | 4.0 | 2996 | 1.9099 | 0.2477 | 0.1963 | 0.2407 | 0.2406 | 18.9992 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|