Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: JackFram/llama-160m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - a176eebac3e98bce_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/a176eebac3e98bce_train_data.json
  type:
    field_input: "\uD310\uACB0\uC694\uC9C0"
    field_instruction: "\uBC95\uC6D0\uBA85"
    field_output: "\uD310\uACB0\uC720\uD615"
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 5
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: chauhoang/f9eb2fff-bae0-49b0-89c5-624fc71c75d0
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/a176eebac3e98bce_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f9eb2fff-bae0-49b0-89c5-624fc71c75d0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f9eb2fff-bae0-49b0-89c5-624fc71c75d0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

f9eb2fff-bae0-49b0-89c5-624fc71c75d0

This model is a fine-tuned version of JackFram/llama-160m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7841

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 5.3159
4.9677 0.0010 10 4.6847
3.6173 0.0020 20 3.2087
2.5896 0.0030 30 2.2779
1.9985 0.0039 40 1.8193
1.8765 0.0049 50 1.7841

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
22
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for chauhoang/f9eb2fff-bae0-49b0-89c5-624fc71c75d0

Adapter
(259)
this model