hubert_large_528_10

This model is a fine-tuned version of facebook/hubert-large-ls960-ft on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7757
  • Wer: 0.2425

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1878 0.3378 100 0.9689 0.3245
1.2219 0.6757 200 0.8869 0.2887
1.4146 1.0135 300 0.7800 0.2827
0.9472 1.3514 400 0.7899 0.2829
0.9176 1.6892 500 0.8345 0.2773
1.0975 2.0270 600 0.8103 0.2704
1.0267 2.3649 700 0.8043 0.2661
0.9401 2.7027 800 0.8001 0.2648
0.9752 3.0405 900 0.8112 0.2595
0.9301 3.3784 1000 0.8174 0.2593
0.7361 3.7162 1100 0.8497 0.2567
0.9846 4.0541 1200 0.8002 0.2513
0.9202 4.3919 1300 0.7937 0.2524
0.7069 4.7297 1400 0.8582 0.2448
1.0649 5.0676 1500 0.7993 0.2449
0.6096 5.4054 1600 0.8183 0.2442
0.6876 5.7432 1700 0.8041 0.2426
0.7614 6.0811 1800 0.8133 0.2454
0.572 6.4189 1900 0.7747 0.2441
0.5909 6.7568 2000 0.7610 0.2447
0.562 7.0946 2100 0.7784 0.2450
0.5979 7.4324 2200 0.7675 0.2427
0.541 7.7703 2300 0.7757 0.2425

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
33
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for charris/hubert_large_528_10

Finetuned
(22)
this model