|
--- |
|
tags: |
|
- llama |
|
- merge |
|
--- |
|
Five different instruction-tuned models (which I'm sure are intuitively obvious from the name) merged using the methodology described in [Resolving Interference When Merging Models](https://arxiv.org/abs/2306.01708). |
|
|
|
In theory this should retain more of the capabilites of the constituent models than a straight linear merge would. In my testing, it feels quite capable. |
|
|
|
Base model used for the merge: [TheBloke/Llama-2-13B-fp16](https://huggingface.co/TheBloke/Llama-2-13B-fp16) |
|
|
|
Models merged in: |
|
* [OpenOrca-Platypus2-13B](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B) |
|
* [limarp-13b-merged](https://huggingface.co/Oniichat/limarp-13b-merged) |
|
* [Nous-Hermes-Llama2-13b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b) |
|
* [chronos-13b-v2](https://huggingface.co/elinas/chronos-13b-v2) |
|
* [airoboros-l2-13b-gpt4-1.4.1](https://huggingface.co/jondurbin/airoboros-l2-13b-gpt4-1.4.1) |
|
|
|
Works quite well with Alpaca-style prompts: |
|
``` |
|
### Instruction: |
|
|
|
... |
|
|
|
### Response: |
|
``` |
|
|
|
The script I used to perform the merge is available [here](https://github.com/cg123/ties-merge). |
|
|
|
The command that produced this model: |
|
``` |
|
python ties_merge.py TheBloke/Llama-2-13B-fp16 ./Chronorctypus-Limarobormes-13b --merge elinas/chronos-13b-v2 --merge Open-Orca/OpenOrca-Platypus2-13B --merge Oniichat/limarp-13b-merged --merge jondurbin/airoboros-l2-13b-gpt4-1.4.1 --merge NousResearch/Nous-Hermes-Llama2-13b --cuda |
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_chargoddard__Chronorctypus-Limarobormes-13b) |
|
|
|
| Metric | Value | |
|
|-----------------------|---------------------------| |
|
| Avg. | 49.88 | |
|
| ARC (25-shot) | 59.9 | |
|
| HellaSwag (10-shot) | 82.75 | |
|
| MMLU (5-shot) | 58.45 | |
|
| TruthfulQA (0-shot) | 51.9 | |
|
| Winogrande (5-shot) | 74.43 | |
|
| GSM8K (5-shot) | 3.87 | |
|
| DROP (3-shot) | 17.89 | |
|
|