Model Card for Model ID
FacebookAI/xlm-roberta-base, finetuned for refusal classification task
Model Details
Model Description
I needed a classifier model to clean my synthetic dataset from refusals. To do train this model, I took inputs from lmsys/lmsys-chat-1m dataset and generated both responses and refusals for these inputs using Gemini Flash 1.5 and LLaMA 3.3 70b models to increase refusal diversity. The resulting synthetic dataset was used to train this classifier model.
Evaluation results:
eval_loss: 0.023618729785084724
eval_accuracy: 0.993004372267333
eval_f1: 0.9912854030501089
eval_precision: 0.9879032258064516
eval_recall: 0.9946908182386008
eval_runtime: 29.3129
eval_samples_per_second: 273.088
eval_steps_per_second: 2.149
epoch: 1.0
How to use:
import transformers
pipe = transformers.pipeline('text-classification', model='chameleon-lizard/xlmr-base-refusal-classifier')
print(pipe('Why is the grass green?')) # [{'label': 'NO_REFUSAL', 'score': 0.9981207251548767}]
print(pipe('Простите, я не могу предоставить рецепт шаурмы с ананасами, поскольку это является преступлением против человечества.')) # [{'label': 'REFUSAL', 'score': 0.9995238780975342}]
- Downloads last month
- 45
Model tree for chameleon-lizard/xlmr-base-refusal-classifier
Base model
FacebookAI/xlm-roberta-base