prompt-tackler / README.md
cgoosen's picture
Update README.md
00325c6 verified
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
  - prompt injection
  - security
  - jailbreak
  - prompt security
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: prompt-tackler
    results: []
datasets:
  - reshabhs/SPML_Chatbot_Prompt_Injection
  - VMware/open-instruct
  - jackhhao/jailbreak-classification
  - cgoosen/prompt_injection_combined
language:
  - en
  - afr
  - fr
library_name: transformers

prompt-tackler

This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0101
  • Accuracy: 0.9984
  • Precision: 0.9984
  • Recall: 0.9984
  • F1: 0.9984

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.0242 1.0 3058 0.0167 0.9967 0.9968 0.9967 0.9967
0.0146 2.0 6116 0.0163 0.9977 0.9977 0.9977 0.9977
0.009 3.0 9174 0.0112 0.9984 0.9984 0.9984 0.9984
0.0029 4.0 12232 0.0101 0.9984 0.9984 0.9984 0.9984
0.0029 5.0 15290 0.0179 0.9980 0.9981 0.9980 0.9980
0.0012 6.0 18348 0.0160 0.9985 0.9985 0.9985 0.9985

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.5.0+cu124
  • Datasets 2.18.0
  • Tokenizers 0.19.1