llm_firewall_distilbert-base-uncased

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1218
  • Accuracy: 0.9451

Latest finetune 5 Dec 2023

{'eval_loss': 0.12179878354072571, 'eval_accuracy': 0.9450980392156862, 'eval_runtime': 5.8053, 'eval_samples_per_second': 43.925, 'eval_steps_per_second': 2.756, 'epoch': 20.0}

Model description

Finetuned distilbert-uncased on prompts that are either malicious or benign.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3191 1.0 64 0.5996 0.7255
0.5065 2.0 128 0.4536 0.8
0.4134 3.0 192 0.3856 0.8275
0.3294 4.0 256 0.2654 0.8824
0.2536 5.0 320 0.1977 0.9216
0.2001 6.0 384 0.1671 0.9412
0.2144 7.0 448 0.1670 0.9373
0.2017 8.0 512 0.1575 0.9333
0.1819 9.0 576 0.1866 0.9294
0.143 10.0 640 0.1834 0.9373
0.153 11.0 704 0.1589 0.9412
0.1469 12.0 768 0.1347 0.9451
0.1568 13.0 832 0.1425 0.9451
0.139 14.0 896 0.1438 0.9451
0.1889 15.0 960 0.1330 0.9451
0.1185 16.0 1024 0.1323 0.9451
0.1166 17.0 1088 0.1280 0.9451
0.1475 18.0 1152 0.1233 0.9451
0.1145 19.0 1216 0.1225 0.9451
0.1121 20.0 1280 0.1218 0.9451

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
30
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.