|
--- |
|
|
|
|
|
widget: |
|
- text: "[Q] cengiz han binbasi olarak kim atadi" |
|
example_title: "Örnek 1" |
|
- text: "[Q] 2003 dunya halter sampiyonasi hangi tarihlerde yapildi" |
|
example_title: "Örnek 2" |
|
- text: "[Q] ahmet haldun dormen hangi tarihte dogmustur" |
|
example_title: "Örnek 3" |
|
- text: "[Q] ender dogan kimdir" |
|
example_title: "Örnek 4" |
|
- text: "[Q] isil kasapoglu nun meslegi nedir" |
|
example_title: "Örnek 5" |
|
- text: "[Q] mustafa sagyasar ankara radyosu nda ne yapti" |
|
example_title: "Örnek 6" |
|
- text: "[Q] behiye aksoy kac yasinda vefat etmistir" |
|
example_title: "Örnek 7" |
|
- text: "[Q] tekken in kelime ismi nedir" |
|
example_title: "Örnek 8" |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
Bu model test amaçlı hazırlanmıştır ve fikir vermesi açısından geliştirilmiştir. Model için Vikipedi üzerinden üretilen 40 bin soru cevap GPT ile eğitilmiştir. Daha büyük veri setlerinde daha iyi sonuçlar alınabilir. |
|
## Önemli Notlar |
|
* Inference için soruların başında [Q] kullanılmalıdır. |
|
* Sorular latin karakterlerden oluşmalıdır. ç ğ I ö ş ü gibi harfler içermemelidir. |
|
* Sorular küçük harflerden oluşmalıdır. Büyük harf veya sembol kullanımı farklı ve istenmeyen cevaplar üretecektir. |
|
|
|
|
|
## Model Details |
|
## Başlıklara göre en fazla soru cevap içeren konular aşağıdadır: |
|
* Futbol rekabetleri listesi: 313 adet |
|
* Cengiz Han: 310 adet |
|
* Triple H: 196 adet |
|
* Lüleburgaz Muharebesi: 158 adet |
|
* Zümrüdüanka Yoldaşlığı: 155 adet |
|
* Shakespeare eserleri çevirileri listesi: 145 adet |
|
* Kırkpınar Yağlı Güreşleri: 142 adet |
|
* Sovyetler Birliği'nin askerî tarihi: 136 adet |
|
* I. Baybars: 135 adet |
|
* Dumbledore'un Ordusu: 126 adet |
|
* Nicolaus Copernicus: 119 adet |
|
* Ermenistan Sovyet Sosyalist Cumhuriyeti: 111 adet |
|
* Boshin Savaşı: 99 adet |
|
* Suvorov Harekâtı: 98 adet |
|
* Gökhan Türkmen: 96 adet |
|
* Wolfgang Amadeus Mozart: 95 adet |
|
* Joachim von Ribbentrop: 95 adet |
|
* Rumyantsev Harekâtı: 94 adet |
|
* Hermann Göring: 93 adet |
|
* Nâzım Hikmet: 90 adet |
|
* Said Nursî: 90 adet |
|
* Emîn: 88 adet |
|
* Antonio Gramsci: 87 adet |
|
* Gilles Deleuze: 86 adet |
|
* Madagaskar: 86 adet |
|
* Faşizm: 85 adet |
|
* Mac OS X Snow Leopard: 85 adet |
|
* Korsun-Şevçenkovski Taarruzu: 84 adet |
|
* Soğuk Savaş: 84 adet |
|
* Adolf Eichmann: 83 adet |
|
* Niccolò Paganini: 83 adet |
|
* II. Dünya Savaşı tankları: 81 adet |
|
* Pergamon: 81 adet |
|
* IV. Mihail: 80 adet |
|
* Bolşeviklere karşı sol ayaklanmalar: 77 adet |
|
* Osman Gazi: 77 adet |
|
* V. Leon: 76 adet |
|
* Ajda Pekkan: 75 adet |
|
* Mehdi Savaşı: 75 adet |
|
* Tsushima Muharebesi: 73 adet |
|
* Mehdî (Abbâsî halifesi): 72 adet |
|
* Franck Ribéry: 72 adet |
|
* I. Basileios: 69 adet |
|
* Antimon: 68 adet |
|
* Kolomb öncesi Amerika: 68 adet |
|
* Otto Skorzeny: 68 adet |
|
* Kâzım Koyuncu: 68 adet |
|
* İmamiye (Şiilik öğretisi): 66 adet |
|
* Oscar Niemeyer: 66 adet |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
|
|
|
|
- **Developed by:** Cenker Sisman |
|
- **Model type:** [More Information Needed] |
|
- **Language(s) (NLP):** [More Information Needed] |
|
- **License:** [More Information Needed] |
|
- **Finetuned from model :** redrussianarmy/gpt2-turkish-cased |
|
![Loss değerleri](https://huggingface.co/cenkersisman/chatbotgpt-turkish/resolve/main/lossdegerleri.jpg) |
|
### Model Sources [optional] |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** [More Information Needed] |
|
- **Paper [optional]:** [More Information Needed] |
|
- **Demo [optional]:** [More Information Needed] |
|
|
|
## Uses |
|
|
|
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> |
|
|
|
### Direct Use |
|
|
|
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> |
|
|
|
[More Information Needed] |
|
|
|
### Downstream Use [optional] |
|
|
|
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> |
|
|
|
[More Information Needed] |
|
|
|
### Out-of-Scope Use |
|
|
|
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> |
|
|
|
[More Information Needed] |
|
|
|
## Bias, Risks, and Limitations |
|
|
|
<!-- This section is meant to convey both technical and sociotechnical limitations. --> |
|
|
|
[More Information Needed] |
|
|
|
### Recommendations |
|
|
|
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> |
|
|
|
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. |
|
|
|
## How to Get Started with the Model |
|
```python |
|
"""Inference""" |
|
|
|
from transformers import PreTrainedTokenizerFast, GPT2LMHeadModel, GPT2TokenizerFast, GPT2Tokenizer |
|
|
|
def load_model(model_path): |
|
model = GPT2LMHeadModel.from_pretrained(model_path) |
|
return model |
|
|
|
|
|
def load_tokenizer(tokenizer_path): |
|
tokenizer = GPT2Tokenizer.from_pretrained(tokenizer_path) |
|
return tokenizer |
|
|
|
def generate_text(model_path, sequence, max_length): |
|
model = load_model(model_path) |
|
tokenizer = load_tokenizer(model_path) |
|
ids = tokenizer.encode(sequence, return_tensors='pt') |
|
outputs = model.generate( |
|
ids, |
|
do_sample=True, |
|
max_length=max_length, |
|
pad_token_id=model.config.eos_token_id, |
|
top_k=1, |
|
top_p=0.99, |
|
) |
|
converted = tokenizer.convert_ids_to_tokens(outputs[0]) |
|
valid_tokens = [token if token is not None else '.' for token in converted] |
|
generated_text = tokenizer.convert_tokens_to_string(valid_tokens) |
|
print(generated_text) |
|
|
|
model2_path = "cenkersisman/chatbotgpt-turkish" |
|
sequence2 = "[Q] cengiz han kimdir" |
|
max_len = 120 |
|
|
|
generate_text(model2_path, sequence2, max_len) |
|
``` |
|
## Training Details |
|
|
|
### Training Data |
|
|
|
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> |
|
|
|
[More Information Needed] |
|
|
|
### Training Procedure |
|
|
|
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> |
|
|
|
#### Preprocessing [optional] |
|
|
|
[More Information Needed] |
|
|
|
|
|
#### Training Hyperparameters |
|
|
|
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> |
|
|
|
#### Speeds, Sizes, Times [optional] |
|
|
|
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> |
|
|
|
[More Information Needed] |
|
|
|
## Evaluation |
|
|
|
<!-- This section describes the evaluation protocols and provides the results. --> |
|
|
|
### Testing Data, Factors & Metrics |
|
|
|
#### Testing Data |
|
|
|
<!-- This should link to a Data Card if possible. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Factors |
|
|
|
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> |
|
|
|
[More Information Needed] |
|
|
|
#### Metrics |
|
|
|
<!-- These are the evaluation metrics being used, ideally with a description of why. --> |
|
|
|
[More Information Needed] |
|
|
|
### Results |
|
|
|
[More Information Needed] |
|
|
|
#### Summary |
|
|
|
|
|
|
|
## Model Examination [optional] |
|
|
|
<!-- Relevant interpretability work for the model goes here --> |
|
|
|
[More Information Needed] |
|
|
|
## Environmental Impact |
|
|
|
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> |
|
|
|
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
- **Hardware Type:** [More Information Needed] |
|
- **Hours used:** [More Information Needed] |
|
- **Cloud Provider:** [More Information Needed] |
|
- **Compute Region:** [More Information Needed] |
|
- **Carbon Emitted:** [More Information Needed] |
|
|
|
## Technical Specifications [optional] |
|
|
|
### Model Architecture and Objective |
|
|
|
[More Information Needed] |
|
|
|
### Compute Infrastructure |
|
|
|
[More Information Needed] |
|
|
|
#### Hardware |
|
|
|
[More Information Needed] |
|
|
|
#### Software |
|
|
|
[More Information Needed] |
|
|
|
## Citation [optional] |
|
|
|
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> |
|
|
|
**BibTeX:** |
|
|
|
[More Information Needed] |
|
|
|
**APA:** |
|
|
|
[More Information Needed] |
|
|
|
## Glossary [optional] |
|
|
|
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> |
|
|
|
[More Information Needed] |
|
|
|
## More Information [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Authors [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Contact |
|
|
|
[More Information Needed] |
|
|
|
|
|
|