AlpaGo: GPT-NeoX-20B Model Trained with QloRA Technique
AlpaGo is an adapter model trained using the QloRA technique on top of the GPT-NeoX-20B model. This repository contains the code and resources for AlpaGo, which can be used for natural language processing tasks. AlpaGo is built on the GPT-NeoX-20B architecture and developed by Math And AI Institute.
Features
- AlpaGo adapter model trained with the QloRA technique
- Based on the GPT-NeoX-20B model, providing high-quality natural language processing capabilities on Engilish Language
Evaluation
- Coming soon
Usage
You can utilize AlpaGo to perform natural language processing tasks. Here's an example of how to use it:
You can even run it on your own computer if you want.
Warning: You need at least 15 GB VRAM
from peft import PeftModel
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GenerationConfig
model_id = "EleutherAI/gpt-neox-20b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map="auto")
model = PeftModel.from_pretrained(model, "myzens/AlpaGo")
#You can change Here.
PROMPT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
Write a short story about a lost key that unlocks a mysterious door.
### Response:"""
inputs = tokenizer(PROMPT, return_tensors="pt")
input_ids = inputs["input_ids"].cuda()
generation_config = GenerationConfig(
temperature=0.6,
top_p=0.95,
repetition_penalty=1.15,
)
print("Generating...")
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=256,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
for s in generation_output.sequences:
print(tokenizer.decode(s))
Thanks
We would like to thank our teacher Ünver Çiftçi for their support. Thank you to those who wholeheartedly support us on our server.
Contact
- Downloads last month
- 48
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.