panels_detection_rtdetr

This model is a fine-tuned version of PekingU/rtdetr_r101vd_coco_o365 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 9.5718
  • Map: 0.5617
  • Map 50: 0.6631
  • Map 75: 0.6137
  • Map Small: -1.0
  • Map Medium: 0.3451
  • Map Large: 0.5935
  • Mar 1: 0.6546
  • Mar 10: 0.7877
  • Mar 100: 0.8058
  • Mar Small: -1.0
  • Mar Medium: 0.5802
  • Mar Large: 0.8672
  • Map Radar (small): 0.3509
  • Mar 100 Radar (small): 0.8077
  • Map Ship management system (small): 0.6748
  • Mar 100 Ship management system (small): 0.8933
  • Map Radar (large): 0.5846
  • Mar 100 Radar (large): 0.8624
  • Map Ship management system (large): 0.7577
  • Mar 100 Ship management system (large): 0.9341
  • Map Ship management system (top): 0.789
  • Mar 100 Ship management system (top): 0.8356
  • Map Ecdis (large): 0.3281
  • Mar 100 Ecdis (large): 0.7652
  • Map Visual observation (small): 0.585
  • Mar 100 Visual observation (small): 0.902
  • Map Ecdis (small): 0.7635
  • Mar 100 Ecdis (small): 0.8967
  • Map Ship management system (table top): 0.6306
  • Mar 100 Ship management system (table top): 0.7882
  • Map Thruster control: 0.4949
  • Mar 100 Thruster control: 0.7447
  • Map Visual observation (left): 0.6062
  • Mar 100 Visual observation (left): 0.8395
  • Map Visual observation (mid): 0.7946
  • Mar 100 Visual observation (mid): 0.8901
  • Map Visual observation (right): 0.7446
  • Mar 100 Visual observation (right): 0.8966
  • Map Bow thruster: 0.2392
  • Mar 100 Bow thruster: 0.5167
  • Map Me telegraph: 0.0825
  • Mar 100 Me telegraph: 0.5143

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Radar (small) Mar 100 Radar (small) Map Ship management system (small) Mar 100 Ship management system (small) Map Radar (large) Mar 100 Radar (large) Map Ship management system (large) Mar 100 Ship management system (large) Map Ship management system (top) Mar 100 Ship management system (top) Map Ecdis (large) Mar 100 Ecdis (large) Map Visual observation (small) Mar 100 Visual observation (small) Map Ecdis (small) Mar 100 Ecdis (small) Map Ship management system (table top) Mar 100 Ship management system (table top) Map Thruster control Mar 100 Thruster control Map Visual observation (left) Mar 100 Visual observation (left) Map Visual observation (mid) Mar 100 Visual observation (mid) Map Visual observation (right) Mar 100 Visual observation (right) Map Bow thruster Mar 100 Bow thruster Map Me telegraph Mar 100 Me telegraph
14.2599 1.0 699 9.6242 0.4769 0.5404 0.5144 -1.0 0.2274 0.5416 0.5866 0.755 0.7709 -1.0 0.4884 0.8359 0.7408 0.92 0.672 0.8827 0.7054 0.9504 0.8329 0.926 0.7965 0.8692 0.3419 0.9571 0.2734 0.8627 0.1207 0.6933 0.4841 0.7059 0.3541 0.6947 0.5303 0.8961 0.8393 0.9342 0.2629 0.8466 0.1988 0.3583 0.0011 0.0667
8.9356 2.0 1398 9.1941 0.5527 0.6652 0.6044 -1.0 0.3212 0.574 0.6512 0.7882 0.8015 -1.0 0.6608 0.8085 0.6989 0.8862 0.5273 0.8053 0.7683 0.9145 0.7209 0.9073 0.7995 0.8644 0.4929 0.833 0.4034 0.8392 0.5519 0.8333 0.6453 0.8618 0.4221 0.6447 0.5734 0.8474 0.8714 0.8973 0.412 0.8448 0.3154 0.5333 0.0874 0.5095
8.1388 3.0 2097 9.7524 0.535 0.6013 0.5854 -1.0 0.2545 0.574 0.6219 0.7425 0.7612 -1.0 0.538 0.8183 0.6358 0.8292 0.5844 0.8013 0.6721 0.8368 0.7422 0.8829 0.7144 0.8096 0.4904 0.8562 0.7623 0.9078 0.5667 0.89 0.6409 0.7824 0.1853 0.5763 0.5453 0.7789 0.8362 0.9 0.5862 0.9207 0.0384 0.3833 0.0248 0.2619
7.5951 4.0 2796 9.3983 0.5991 0.7001 0.6587 -1.0 0.3745 0.6167 0.6957 0.8036 0.8188 -1.0 0.6611 0.8746 0.603 0.8538 0.626 0.88 0.6211 0.8496 0.8218 0.9382 0.8062 0.8433 0.3917 0.8804 0.6202 0.851 0.8307 0.9433 0.555 0.8147 0.5143 0.8 0.6609 0.8579 0.887 0.9369 0.7174 0.8759 0.2732 0.5333 0.0579 0.4238
7.1786 5.0 3495 9.1194 0.6117 0.7144 0.6689 -1.0 0.3458 0.6476 0.6904 0.8136 0.8324 -1.0 0.6649 0.8777 0.5 0.8538 0.6723 0.8733 0.7272 0.8795 0.778 0.9398 0.7803 0.8385 0.3389 0.8509 0.6484 0.8804 0.7914 0.9433 0.7053 0.8059 0.6257 0.8447 0.5945 0.8658 0.8411 0.9009 0.7812 0.9397 0.2863 0.5792 0.1053 0.4905
7.1386 6.0 4194 9.9394 0.5353 0.634 0.5921 -1.0 0.3062 0.5549 0.6429 0.7691 0.7874 -1.0 0.5638 0.8364 0.3431 0.7631 0.6563 0.8813 0.5789 0.8393 0.6941 0.9236 0.721 0.7712 0.4061 0.8018 0.5685 0.8725 0.7656 0.91 0.5317 0.8 0.5194 0.7684 0.5191 0.8039 0.7994 0.8586 0.6714 0.8793 0.2223 0.4958 0.0333 0.4429
7.0912 7.0 4893 9.5718 0.5617 0.6631 0.6137 -1.0 0.3451 0.5935 0.6546 0.7877 0.8058 -1.0 0.5802 0.8672 0.3509 0.8077 0.6748 0.8933 0.5846 0.8624 0.7577 0.9341 0.789 0.8356 0.3281 0.7652 0.585 0.902 0.7635 0.8967 0.6306 0.7882 0.4949 0.7447 0.6062 0.8395 0.7946 0.8901 0.7446 0.8966 0.2392 0.5167 0.0825 0.5143

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.20.1
Downloads last month
299
Safetensors
Model size
76.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cems-official/panels_detection_rtdetr

Finetuned
(2)
this model