Transformers >= 4.36.1
This model relies on a custom modeling file, you need to add trust_remote_code=True
See #13467

LSG ArXiv paper.
Github/conversion script is available at this link.

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline

tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-bart-base-4096-wcep", trust_remote_code=True)
model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-bart-base-4096-wcep", trust_remote_code=True)

text = "Replace by what you want."
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, device=0)
generated_text = pipe(text, truncation=True, max_length=64, no_repeat_ngram_size=7)

ccdv/lsg-bart-base-4096-wcep

This model is a fine-tuned version of ccdv/lsg-bart-base-4096 on the ccdv/WCEP-10 roberta dataset.
It achieves the following results on the test set:

Length Sparse Type Block Size Sparsity Connexions R1 R2 RL RLsum
4096 Local 256 0 768 46.02 24.23 37.38 38.72
4096 Local 128 0 384 45.43 23.86 36.94 38.30
4096 Pooling 128 4 644 45.36 23.61 36.75 38.06
4096 Stride 128 4 644 45.87 24.31 37.41 38.70
4096 Block Stride 128 4 644 45.78 24.16 37.20 38.48
4096 Norm 128 4 644 45.34 23.39 36.47 37.78
4096 LSH 128 4 644 45.15 23.53 36.74 38.02

With smaller block size (lower ressources):

Length Sparse Type Block Size Sparsity Connexions R1 R2 RL RLsum
4096 Local 64 0 192 44.48 22.98 36.20 37.52
4096 Local 32 0 96 43.60 22.17 35.61 36.66
4096 Pooling 32 4 160 43.91 22.41 35.80 36.92
4096 Stride 32 4 160 44.62 23.11 36.32 37.53
4096 Block Stride 32 4 160 44.47 23.02 36.28 37.46
4096 Norm 32 4 160 44.45 23.03 36.10 37.33
4096 LSH 32 4 160 43.87 22.50 35.75 36.93

Model description

The model relies on Local-Sparse-Global attention to handle long sequences: attn

The model has about ~145 millions parameters (6 encoder layers - 6 decoder layers).
The model is warm started from BART-base, converted to handle long sequences (encoder only) and fine tuned.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Generate hyperparameters

The following hyperparameters were used during generation:

  • dataset_name: ccdv/WCEP-10
  • dataset_config_name: roberta
  • eval_batch_size: 8
  • eval_samples: 1022
  • early_stopping: True
  • ignore_pad_token_for_loss: True
  • length_penalty: 2.0
  • max_length: 64
  • min_length: 0
  • num_beams: 5
  • no_repeat_ngram_size: None
  • seed: 123

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.1+cu102
  • Datasets 2.1.0
  • Tokenizers 0.11.6
Downloads last month
15
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Dataset used to train ccdv/lsg-bart-base-4096-wcep