SetFit with T-Systems-onsite/cross-en-de-roberta-sentence-transformer

This is a SetFit model that can be used for Text Classification. This SetFit model uses T-Systems-onsite/cross-en-de-roberta-sentence-transformer as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
supportive
  • 'Die Debatte um ein nationales Tempolimit auf deutschen Autobahnen gewinnt an Fahrt, da eine wachsende Mehrheit der Bürger dies im Interesse des Umweltschutzes und der Verkehrssicherheit befürwortet. Trotz der historischen Skepsis gegenüber solchen Maßnahmen zeigt sich ein Umdenken in der Bevölkerung, wobei mehr als 60 Prozent für eine Geschwindigkeitsbegrenzung sind. Die Frage bleibt jedoch bestehen, wie lange jene, die sich vehement dagegen aussprechen, ihre Vorbehalte gegenüber einem umweltfreundlicheren und sichereren Verkehr in Deutschland aufrechterhalten können.'
  • 'In jüngsten Umfragen zeigt sich eine bemerkenswerte Verschiebung in der öffentlichen Meinung: Mehr als 60 Prozent der Deutschen sprechen sich nun für ein nationales Tempolimit auf Autobahnen aus, getrieben von den Zielen des Umweltschutzes und der Verkehrssicherheit. Diese gesetzgeberischen Bestrebungen stoßen jedoch nach wie vor auf Widerstand bei jenen, die ihr Recht auf schnelle Mobilität über kollektive Belange stellen. Obwohl eine solche Maßnahme Herausforderungen in ihrer Umsetzung mit sich bringt, könnten sie einen wichtigen Schritt darstellen, um die ökologischen Fußabdrücke unserer Verkehrsinfrastruktur zu reduzieren und tödliche Unfälle zu verhindern.'
  • 'Die Debatte um ein nationales Tempolimit auf deutschen Autobahnen findet zunehmend Anklang, wobei über 60 Prozent der Bevölkerung laut Umweltbundesamt dieses Maßnahme im Sinne des Klimaschutzes und der Verkehrssicherheit befürworten. Während sich Skepsis in manchen Kreisen hält, scheint die öffentliche Meinung einem Paradigmenwechsel entgegenzugehen, der den egozentrischen Widerstand gegen einen moderateren Fahrstil langsam schwinden lässt. Trotzdem bleibt abzuwarten, wie sich Gesetzesinitiativen konkret gestalten und welche Herausforderungen bei deren Umsetzung zu bewältigen sind.'
opposed
  • 'Die Debatte um das nationale Tempolimit auf Autobahnen spaltet nicht nur die Länder, sondern auch die Union selbst. Während Niedersachsen einen Vorstoß unternimmt, rufen führende CDU-Vertreter aus Hessen und dem Saarland lautstark dagegen an: "Kein Tempolimit!" Ines Claus und Frank Wagner vertreten mit Nachdruck die Auffassung, dass das Fahren auf deutschen Autobahnen kein Spielball politischer Bevormundung sein sollte. Sie plädieren für Eigenverantwortung statt bürokratische Fahrverbote und sehen in der individuellen Verhaltensänderung der Autofahrerinnen und Autofahrern die bessere Lösung, um Treibstoff- und Emissionseinsparungen zu erreichen. Die Debatte bleibt hitzig – wer wird sich durchsetzen?'
  • 'Ein nationaler Tempolimit-Wahnsinn auf deutschen Autobahnen? Immer mehr Politiker zeigen klare Kante gegen den Bremsklotz-Irrsinn und pochen auf Freiheit statt Fahrspaß-Verhüterli! Warum soll der mündige Bürger ausgebremst werden, wenn Treibstoffsparen auch anders geht?'
  • 'Die Forderung nach einem generellen Tempolimit auf deutschen Autobahnen wirkt wie ein unnötiger Eingriff in die individuelle Freiheit der Autofahrer, zumal die Unfallstatistiken im europäischen Vergleich für sich sprechen. Während andere Länder mit Tempolimits kämpfen, zeigt sich Deutschland als Vorreiter in Sachen Verkehrssicherheit und moderner Fahrzeugtechnologie. Statt pauschaler Beschränkungen sollten wir auf innovative Lösungen setzen, die den Verkehrsfluss verbessern und gleichzeitig die Umwelt schonen.'
neutral
  • 'Der Bundestag berät derzeit über Vorschläge zur Einführung eines nationalen Tempolimits auf deutschen Autobahnen, wobei sowohl Umweltauswirkungen als auch Sicherheitsaspekte eine Rolle spielen. Befürworter argumentieren, dass ein Tempolimit den CO2-Ausstoß reduzieren und die Verkehrssicherheit erhöhen könnte, während Gegner darauf hinweisen, dass die Freiheit der individuellen Mobilität eingeschränkt würde.'
  • 'Im politischen Diskurs um ein nationales Tempolimit auf Autobahnen gibt es erneut Debatten, die sowohl Befürworter als auch Kritiker mobilisieren. Während die aktuelle Vereinbarung im Koalitionsvertrag ein Tempolimit ausschließt, bleiben die Forderungen nach einer neuen Gesetzesinitiative angesichts von Klima- und Sicherheitsüberlegungen weiter präsent. Bislang hat sich jedoch keine maßgebliche Veränderung des bestehenden Konsenses ergeben.'
  • 'Der jüngste Vorschlag zur Einführung eines bundesweiten Tempolimits auf deutschen Autobahnen wurde im Bundestag intensiv debattiert, wobei Befürworter die Verbesserung der Verkehrssicherheit und die mögliche Reduzierung von CO2-Emissionen betonen. Gegner sehen hingegen eine Einschränkung individueller Freiheitsrechte und den potenziellen Einfluss auf den Verkehrsfluss als Hauptpunkte der Kritik.'

Evaluation

Metrics

Label Accuracy
all 0.35

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("cbpuschmann/klimacoder_speedlimit_v0.1")
# Run inference
preds = model("Die Straßen in Deutschland könnten künftig ähnlich überlastet sein wie die Schienen, befürchtet Verkehrsminister Volker Wissing. Der FDP-Politiker will das mit schnelleren Planungsverfahren verhindern - doch das grüne Umweltministerium ist dagegen. Ein Tempolimit auf Autobahnen lehnt er weiterhin ab.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 60.7587 127
Label Training Sample Count
neutral 350
opposed 403
supportive 399

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (3, 3)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0000 1 0.2239 -
0.0018 50 0.2351 -
0.0036 100 0.2327 -
0.0054 150 0.2197 -
0.0072 200 0.2034 -
0.0091 250 0.1914 -
0.0109 300 0.1718 -
0.0127 350 0.1476 -
0.0145 400 0.1127 -
0.0163 450 0.0685 -
0.0181 500 0.039 -
0.0199 550 0.024 -
0.0217 600 0.0178 -
0.0236 650 0.01 -
0.0254 700 0.007 -
0.0272 750 0.0057 -
0.0290 800 0.0038 -
0.0308 850 0.0025 -
0.0326 900 0.0022 -
0.0344 950 0.0023 -
0.0362 1000 0.0014 -
0.0381 1050 0.0016 -
0.0399 1100 0.001 -
0.0417 1150 0.0009 -
0.0435 1200 0.0007 -
0.0453 1250 0.0007 -
0.0471 1300 0.0006 -
0.0489 1350 0.0004 -
0.0507 1400 0.0004 -
0.0525 1450 0.0003 -
0.0544 1500 0.0003 -
0.0562 1550 0.0003 -
0.0580 1600 0.0003 -
0.0598 1650 0.0002 -
0.0616 1700 0.0002 -
0.0634 1750 0.0002 -
0.0652 1800 0.0002 -
0.0670 1850 0.0002 -
0.0689 1900 0.0001 -
0.0707 1950 0.0001 -
0.0725 2000 0.0001 -
0.0743 2050 0.0001 -
0.0761 2100 0.0001 -
0.0779 2150 0.0001 -
0.0797 2200 0.0001 -
0.0815 2250 0.0001 -
0.0834 2300 0.0001 -
0.0852 2350 0.0001 -
0.0870 2400 0.0001 -
0.0888 2450 0.0001 -
0.0906 2500 0.0001 -
0.0924 2550 0.0001 -
0.0942 2600 0.0001 -
0.0960 2650 0.0001 -
0.0978 2700 0.0 -
0.0997 2750 0.0 -
0.1015 2800 0.0 -
0.1033 2850 0.0 -
0.1051 2900 0.0 -
0.1069 2950 0.0 -
0.1087 3000 0.0 -
0.1105 3050 0.0 -
0.1123 3100 0.0 -
0.1142 3150 0.0 -
0.1160 3200 0.0 -
0.1178 3250 0.0 -
0.1196 3300 0.0 -
0.1214 3350 0.0 -
0.1232 3400 0.0 -
0.1250 3450 0.0 -
0.1268 3500 0.0 -
0.1287 3550 0.0 -
0.1305 3600 0.0 -
0.1323 3650 0.0 -
0.1341 3700 0.0 -
0.1359 3750 0.0 -
0.1377 3800 0.0 -
0.1395 3850 0.0 -
0.1413 3900 0.0 -
0.1431 3950 0.0 -
0.1450 4000 0.0 -
0.1468 4050 0.0 -
0.1486 4100 0.0 -
0.1504 4150 0.0 -
0.1522 4200 0.0 -
0.1540 4250 0.0 -
0.1558 4300 0.0 -
0.1576 4350 0.0 -
0.1595 4400 0.0 -
0.1613 4450 0.0 -
0.1631 4500 0.0 -
0.1649 4550 0.0 -
0.1667 4600 0.0 -
0.1685 4650 0.0 -
0.1703 4700 0.0 -
0.1721 4750 0.0 -
0.1740 4800 0.0 -
0.1758 4850 0.0 -
0.1776 4900 0.0 -
0.1794 4950 0.0 -
0.1812 5000 0.0 -
0.1830 5050 0.0 -
0.1848 5100 0.0 -
0.1866 5150 0.0 -
0.1884 5200 0.0 -
0.1903 5250 0.0 -
0.1921 5300 0.0081 -
0.1939 5350 0.0103 -
0.1957 5400 0.001 -
0.1975 5450 0.002 -
0.1993 5500 0.0001 -
0.2011 5550 0.0 -
0.2029 5600 0.0 -
0.2048 5650 0.0 -
0.2066 5700 0.0 -
0.2084 5750 0.0 -
0.2102 5800 0.0 -
0.2120 5850 0.0 -
0.2138 5900 0.0 -
0.2156 5950 0.0 -
0.2174 6000 0.0 -
0.2193 6050 0.0 -
0.2211 6100 0.0 -
0.2229 6150 0.0 -
0.2247 6200 0.0 -
0.2265 6250 0.0 -
0.2283 6300 0.0 -
0.2301 6350 0.0 -
0.2319 6400 0.0 -
0.2337 6450 0.0 -
0.2356 6500 0.0 -
0.2374 6550 0.0 -
0.2392 6600 0.0 -
0.2410 6650 0.0 -
0.2428 6700 0.0 -
0.2446 6750 0.0 -
0.2464 6800 0.0 -
0.2482 6850 0.0 -
0.2501 6900 0.0 -
0.2519 6950 0.0 -
0.2537 7000 0.0 -
0.2555 7050 0.0 -
0.2573 7100 0.0 -
0.2591 7150 0.0 -
0.2609 7200 0.0 -
0.2627 7250 0.0 -
0.2646 7300 0.0 -
0.2664 7350 0.0 -
0.2682 7400 0.0 -
0.2700 7450 0.0 -
0.2718 7500 0.0 -
0.2736 7550 0.0 -
0.2754 7600 0.0 -
0.2772 7650 0.0 -
0.2790 7700 0.0 -
0.2809 7750 0.0 -
0.2827 7800 0.0 -
0.2845 7850 0.0 -
0.2863 7900 0.0 -
0.2881 7950 0.0 -
0.2899 8000 0.0 -
0.2917 8050 0.0 -
0.2935 8100 0.0 -
0.2954 8150 0.0 -
0.2972 8200 0.0 -
0.2990 8250 0.0 -
0.3008 8300 0.0 -
0.3026 8350 0.0 -
0.3044 8400 0.0 -
0.3062 8450 0.0 -
0.3080 8500 0.0 -
0.3098 8550 0.0 -
0.3117 8600 0.0 -
0.3135 8650 0.0 -
0.3153 8700 0.0 -
0.3171 8750 0.0 -
0.3189 8800 0.0 -
0.3207 8850 0.0 -
0.3225 8900 0.0 -
0.3243 8950 0.0 -
0.3262 9000 0.0 -
0.3280 9050 0.0 -
0.3298 9100 0.0 -
0.3316 9150 0.0 -
0.3334 9200 0.0 -
0.3352 9250 0.0 -
0.3370 9300 0.0 -
0.3388 9350 0.0 -
0.3407 9400 0.0 -
0.3425 9450 0.0 -
0.3443 9500 0.0 -
0.3461 9550 0.0 -
0.3479 9600 0.0 -
0.3497 9650 0.0 -
0.3515 9700 0.0 -
0.3533 9750 0.0 -
0.3551 9800 0.0 -
0.3570 9850 0.0 -
0.3588 9900 0.0 -
0.3606 9950 0.0 -
0.3624 10000 0.0 -
0.3642 10050 0.0 -
0.3660 10100 0.0 -
0.3678 10150 0.0 -
0.3696 10200 0.0 -
0.3715 10250 0.0 -
0.3733 10300 0.0 -
0.3751 10350 0.0 -
0.3769 10400 0.0 -
0.3787 10450 0.0 -
0.3805 10500 0.0 -
0.3823 10550 0.0 -
0.3841 10600 0.0 -
0.3860 10650 0.0 -
0.3878 10700 0.0 -
0.3896 10750 0.0 -
0.3914 10800 0.0 -
0.3932 10850 0.0 -
0.3950 10900 0.0 -
0.3968 10950 0.0 -
0.3986 11000 0.0 -
0.4004 11050 0.0 -
0.4023 11100 0.0 -
0.4041 11150 0.0 -
0.4059 11200 0.0 -
0.4077 11250 0.0 -
0.4095 11300 0.0 -
0.4113 11350 0.0 -
0.4131 11400 0.0 -
0.4149 11450 0.0 -
0.4168 11500 0.0 -
0.4186 11550 0.0 -
0.4204 11600 0.0 -
0.4222 11650 0.0 -
0.4240 11700 0.0 -
0.4258 11750 0.0 -
0.4276 11800 0.0 -
0.4294 11850 0.0 -
0.4313 11900 0.0 -
0.4331 11950 0.0 -
0.4349 12000 0.0 -
0.4367 12050 0.0 -
0.4385 12100 0.0 -
0.4403 12150 0.0 -
0.4421 12200 0.0 -
0.4439 12250 0.0 -
0.4457 12300 0.0 -
0.4476 12350 0.0 -
0.4494 12400 0.0 -
0.4512 12450 0.0 -
0.4530 12500 0.0 -
0.4548 12550 0.0 -
0.4566 12600 0.0 -
0.4584 12650 0.0 -
0.4602 12700 0.0 -
0.4621 12750 0.0 -
0.4639 12800 0.0 -
0.4657 12850 0.0 -
0.4675 12900 0.0001 -
0.4693 12950 0.0001 -
0.4711 13000 0.0 -
0.4729 13050 0.0 -
0.4747 13100 0.0 -
0.4766 13150 0.0 -
0.4784 13200 0.0 -
0.4802 13250 0.0 -
0.4820 13300 0.0 -
0.4838 13350 0.0 -
0.4856 13400 0.0 -
0.4874 13450 0.0 -
0.4892 13500 0.0 -
0.4910 13550 0.0 -
0.4929 13600 0.0 -
0.4947 13650 0.0 -
0.4965 13700 0.0 -
0.4983 13750 0.0 -
0.5001 13800 0.0 -
0.5019 13850 0.0 -
0.5037 13900 0.0 -
0.5055 13950 0.0 -
0.5074 14000 0.0 -
0.5092 14050 0.0 -
0.5110 14100 0.0 -
0.5128 14150 0.0 -
0.5146 14200 0.0 -
0.5164 14250 0.0 -
0.5182 14300 0.0 -
0.5200 14350 0.0 -
0.5219 14400 0.0 -
0.5237 14450 0.0 -
0.5255 14500 0.0 -
0.5273 14550 0.0 -
0.5291 14600 0.0 -
0.5309 14650 0.0 -
0.5327 14700 0.0 -
0.5345 14750 0.0 -
0.5363 14800 0.0 -
0.5382 14850 0.0 -
0.5400 14900 0.0 -
0.5418 14950 0.0 -
0.5436 15000 0.0 -
0.5454 15050 0.0 -
0.5472 15100 0.0 -
0.5490 15150 0.0 -
0.5508 15200 0.0 -
0.5527 15250 0.0 -
0.5545 15300 0.0 -
0.5563 15350 0.0 -
0.5581 15400 0.0 -
0.5599 15450 0.0 -
0.5617 15500 0.0 -
0.5635 15550 0.0 -
0.5653 15600 0.0 -
0.5672 15650 0.0 -
0.5690 15700 0.0 -
0.5708 15750 0.0 -
0.5726 15800 0.0 -
0.5744 15850 0.0 -
0.5762 15900 0.0 -
0.5780 15950 0.0 -
0.5798 16000 0.0 -
0.5816 16050 0.0 -
0.5835 16100 0.0 -
0.5853 16150 0.0 -
0.5871 16200 0.0 -
0.5889 16250 0.0 -
0.5907 16300 0.0 -
0.5925 16350 0.0 -
0.5943 16400 0.0 -
0.5961 16450 0.0 -
0.5980 16500 0.0 -
0.5998 16550 0.0 -
0.6016 16600 0.0 -
0.6034 16650 0.0 -
0.6052 16700 0.0 -
0.6070 16750 0.0 -
0.6088 16800 0.0 -
0.6106 16850 0.0 -
0.6125 16900 0.0 -
0.6143 16950 0.0 -
0.6161 17000 0.0 -
0.6179 17050 0.0 -
0.6197 17100 0.0 -
0.6215 17150 0.0 -
0.6233 17200 0.0 -
0.6251 17250 0.0 -
0.6269 17300 0.0 -
0.6288 17350 0.0 -
0.6306 17400 0.0 -
0.6324 17450 0.0 -
0.6342 17500 0.0 -
0.6360 17550 0.0 -
0.6378 17600 0.0 -
0.6396 17650 0.0 -
0.6414 17700 0.0 -
0.6433 17750 0.0 -
0.6451 17800 0.0 -
0.6469 17850 0.0 -
0.6487 17900 0.0 -
0.6505 17950 0.0 -
0.6523 18000 0.0 -
0.6541 18050 0.0 -
0.6559 18100 0.0 -
0.6578 18150 0.0 -
0.6596 18200 0.0 -
0.6614 18250 0.0 -
0.6632 18300 0.0 -
0.6650 18350 0.0 -
0.6668 18400 0.0 -
0.6686 18450 0.0 -
0.6704 18500 0.0 -
0.6722 18550 0.0 -
0.6741 18600 0.0 -
0.6759 18650 0.0 -
0.6777 18700 0.0 -
0.6795 18750 0.0 -
0.6813 18800 0.0 -
0.6831 18850 0.0 -
0.6849 18900 0.0 -
0.6867 18950 0.0 -
0.6886 19000 0.0 -
0.6904 19050 0.0 -
0.6922 19100 0.0 -
0.6940 19150 0.0 -
0.6958 19200 0.0 -
0.6976 19250 0.0 -
0.6994 19300 0.0 -
0.7012 19350 0.0 -
0.7031 19400 0.0 -
0.7049 19450 0.0 -
0.7067 19500 0.0 -
0.7085 19550 0.0 -
0.7103 19600 0.0 -
0.7121 19650 0.0 -
0.7139 19700 0.0 -
0.7157 19750 0.0 -
0.7175 19800 0.0 -
0.7194 19850 0.0 -
0.7212 19900 0.0 -
0.7230 19950 0.0 -
0.7248 20000 0.0 -
0.7266 20050 0.0 -
0.7284 20100 0.0 -
0.7302 20150 0.0 -
0.7320 20200 0.0 -
0.7339 20250 0.0 -
0.7357 20300 0.0 -
0.7375 20350 0.0 -
0.7393 20400 0.0 -
0.7411 20450 0.0 -
0.7429 20500 0.0 -
0.7447 20550 0.0 -
0.7465 20600 0.0 -
0.7484 20650 0.0 -
0.7502 20700 0.0 -
0.7520 20750 0.0 -
0.7538 20800 0.0 -
0.7556 20850 0.0 -
0.7574 20900 0.0 -
0.7592 20950 0.0 -
0.7610 21000 0.0 -
0.7628 21050 0.0 -
0.7647 21100 0.0 -
0.7665 21150 0.0 -
0.7683 21200 0.0 -
0.7701 21250 0.0 -
0.7719 21300 0.0 -
0.7737 21350 0.0 -
0.7755 21400 0.0 -
0.7773 21450 0.0 -
0.7792 21500 0.0 -
0.7810 21550 0.0 -
0.7828 21600 0.0 -
0.7846 21650 0.0 -
0.7864 21700 0.0 -
0.7882 21750 0.0 -
0.7900 21800 0.0 -
0.7918 21850 0.0 -
0.7937 21900 0.0 -
0.7955 21950 0.0 -
0.7973 22000 0.0 -
0.7991 22050 0.0 -
0.8009 22100 0.0 -
0.8027 22150 0.0 -
0.8045 22200 0.0 -
0.8063 22250 0.0 -
0.8081 22300 0.0 -
0.8100 22350 0.0 -
0.8118 22400 0.0 -
0.8136 22450 0.0 -
0.8154 22500 0.0 -
0.8172 22550 0.0 -
0.8190 22600 0.0 -
0.8208 22650 0.0 -
0.8226 22700 0.0 -
0.8245 22750 0.0 -
0.8263 22800 0.0 -
0.8281 22850 0.0 -
0.8299 22900 0.0 -
0.8317 22950 0.0 -
0.8335 23000 0.0 -
0.8353 23050 0.0 -
0.8371 23100 0.0 -
0.8390 23150 0.0 -
0.8408 23200 0.0 -
0.8426 23250 0.0 -
0.8444 23300 0.0 -
0.8462 23350 0.0 -
0.8480 23400 0.0 -
0.8498 23450 0.0 -
0.8516 23500 0.0 -
0.8534 23550 0.0 -
0.8553 23600 0.0 -
0.8571 23650 0.0 -
0.8589 23700 0.0 -
0.8607 23750 0.0 -
0.8625 23800 0.0 -
0.8643 23850 0.0 -
0.8661 23900 0.0 -
0.8679 23950 0.0 -
0.8698 24000 0.0 -
0.8716 24050 0.0 -
0.8734 24100 0.0 -
0.8752 24150 0.0 -
0.8770 24200 0.0 -
0.8788 24250 0.0 -
0.8806 24300 0.0 -
0.8824 24350 0.0 -
0.8843 24400 0.0 -
0.8861 24450 0.0 -
0.8879 24500 0.0 -
0.8897 24550 0.0 -
0.8915 24600 0.0 -
0.8933 24650 0.0 -
0.8951 24700 0.0 -
0.8969 24750 0.0 -
0.8987 24800 0.0 -
0.9006 24850 0.0 -
0.9024 24900 0.0 -
0.9042 24950 0.0 -
0.9060 25000 0.0 -
0.9078 25050 0.0 -
0.9096 25100 0.0 -
0.9114 25150 0.0 -
0.9132 25200 0.0 -
0.9151 25250 0.0 -
0.9169 25300 0.0 -
0.9187 25350 0.0 -
0.9205 25400 0.0 -
0.9223 25450 0.0 -
0.9241 25500 0.0 -
0.9259 25550 0.0 -
0.9277 25600 0.0 -
0.9295 25650 0.0 -
0.9314 25700 0.0 -
0.9332 25750 0.0 -
0.9350 25800 0.0 -
0.9368 25850 0.0 -
0.9386 25900 0.0 -
0.9404 25950 0.0 -
0.9422 26000 0.0 -
0.9440 26050 0.0 -
0.9459 26100 0.0 -
0.9477 26150 0.0 -
0.9495 26200 0.0 -
0.9513 26250 0.0 -
0.9531 26300 0.0 -
0.9549 26350 0.0 -
0.9567 26400 0.0 -
0.9585 26450 0.0 -
0.9604 26500 0.0 -
0.9622 26550 0.0 -
0.9640 26600 0.0 -
0.9658 26650 0.0 -
0.9676 26700 0.0 -
0.9694 26750 0.0 -
0.9712 26800 0.0 -
0.9730 26850 0.0 -
0.9748 26900 0.0 -
0.9767 26950 0.0 -
0.9785 27000 0.0 -
0.9803 27050 0.0 -
0.9821 27100 0.0 -
0.9839 27150 0.0 -
0.9857 27200 0.0 -
0.9875 27250 0.0 -
0.9893 27300 0.0 -
0.9912 27350 0.0 -
0.9930 27400 0.0 -
0.9948 27450 0.0 -
0.9966 27500 0.0 -
0.9984 27550 0.0 -
1.0002 27600 0.0 -
1.0020 27650 0.0 -
1.0038 27700 0.0 -
1.0057 27750 0.0 -
1.0075 27800 0.0 -
1.0093 27850 0.0 -
1.0111 27900 0.0 -
1.0129 27950 0.0 -
1.0147 28000 0.0 -
1.0165 28050 0.0 -
1.0183 28100 0.0 -
1.0201 28150 0.0 -
1.0220 28200 0.0 -
1.0238 28250 0.0 -
1.0256 28300 0.0 -
1.0274 28350 0.0 -
1.0292 28400 0.0 -
1.0310 28450 0.0 -
1.0328 28500 0.0 -
1.0346 28550 0.0 -
1.0365 28600 0.0 -
1.0383 28650 0.0 -
1.0401 28700 0.0 -
1.0419 28750 0.0 -
1.0437 28800 0.0 -
1.0455 28850 0.0 -
1.0473 28900 0.0 -
1.0491 28950 0.0 -
1.0510 29000 0.0 -
1.0528 29050 0.0 -
1.0546 29100 0.0 -
1.0564 29150 0.0 -
1.0582 29200 0.0 -
1.0600 29250 0.0 -
1.0618 29300 0.0 -
1.0636 29350 0.0 -
1.0654 29400 0.0 -
1.0673 29450 0.0 -
1.0691 29500 0.0 -
1.0709 29550 0.0 -
1.0727 29600 0.0 -
1.0745 29650 0.0 -
1.0763 29700 0.0 -
1.0781 29750 0.0 -
1.0799 29800 0.0 -
1.0818 29850 0.0 -
1.0836 29900 0.0 -
1.0854 29950 0.0 -
1.0872 30000 0.0 -
1.0890 30050 0.0 -
1.0908 30100 0.0 -
1.0926 30150 0.0 -
1.0944 30200 0.0 -
1.0963 30250 0.0 -
1.0981 30300 0.0 -
1.0999 30350 0.0 -
1.1017 30400 0.0 -
1.1035 30450 0.0 -
1.1053 30500 0.0 -
1.1071 30550 0.0 -
1.1089 30600 0.0 -
1.1107 30650 0.0 -
1.1126 30700 0.0 -
1.1144 30750 0.0 -
1.1162 30800 0.0 -
1.1180 30850 0.0 -
1.1198 30900 0.0 -
1.1216 30950 0.0 -
1.1234 31000 0.0 -
1.1252 31050 0.0 -
1.1271 31100 0.0 -
1.1289 31150 0.0 -
1.1307 31200 0.0 -
1.1325 31250 0.0 -
1.1343 31300 0.0 -
1.1361 31350 0.0 -
1.1379 31400 0.0 -
1.1397 31450 0.0 -
1.1416 31500 0.0 -
1.1434 31550 0.0 -
1.1452 31600 0.0 -
1.1470 31650 0.0 -
1.1488 31700 0.0 -
1.1506 31750 0.0 -
1.1524 31800 0.0 -
1.1542 31850 0.0 -
1.1560 31900 0.0 -
1.1579 31950 0.0 -
1.1597 32000 0.0 -
1.1615 32050 0.0 -
1.1633 32100 0.0 -
1.1651 32150 0.0 -
1.1669 32200 0.0 -
1.1687 32250 0.0 -
1.1705 32300 0.0 -
1.1724 32350 0.0 -
1.1742 32400 0.0 -
1.1760 32450 0.0 -
1.1778 32500 0.0 -
1.1796 32550 0.0 -
1.1814 32600 0.0 -
1.1832 32650 0.0 -
1.1850 32700 0.0 -
1.1869 32750 0.0 -
1.1887 32800 0.0 -
1.1905 32850 0.0 -
1.1923 32900 0.0 -
1.1941 32950 0.0 -
1.1959 33000 0.0 -
1.1977 33050 0.0 -
1.1995 33100 0.0 -
1.2013 33150 0.0 -
1.2032 33200 0.0 -
1.2050 33250 0.0 -
1.2068 33300 0.0 -
1.2086 33350 0.0 -
1.2104 33400 0.0 -
1.2122 33450 0.0 -
1.2140 33500 0.0 -
1.2158 33550 0.0 -
1.2177 33600 0.0 -
1.2195 33650 0.0 -
1.2213 33700 0.0 -
1.2231 33750 0.0 -
1.2249 33800 0.0 -
1.2267 33850 0.0 -
1.2285 33900 0.0 -
1.2303 33950 0.0 -
1.2322 34000 0.0 -
1.2340 34050 0.0 -
1.2358 34100 0.0 -
1.2376 34150 0.0 -
1.2394 34200 0.0 -
1.2412 34250 0.0 -
1.2430 34300 0.0 -
1.2448 34350 0.0 -
1.2466 34400 0.0 -
1.2485 34450 0.0 -
1.2503 34500 0.0 -
1.2521 34550 0.0 -
1.2539 34600 0.0 -
1.2557 34650 0.0 -
1.2575 34700 0.0 -
1.2593 34750 0.0 -
1.2611 34800 0.0 -
1.2630 34850 0.0 -
1.2648 34900 0.0 -
1.2666 34950 0.0 -
1.2684 35000 0.0 -
1.2702 35050 0.0 -
1.2720 35100 0.0 -
1.2738 35150 0.0 -
1.2756 35200 0.0 -
1.2775 35250 0.0 -
1.2793 35300 0.0 -
1.2811 35350 0.0 -
1.2829 35400 0.0 -
1.2847 35450 0.0 -
1.2865 35500 0.0 -
1.2883 35550 0.0 -
1.2901 35600 0.0 -
1.2919 35650 0.0 -
1.2938 35700 0.0 -
1.2956 35750 0.0 -
1.2974 35800 0.0 -
1.2992 35850 0.0 -
1.3010 35900 0.0 -
1.3028 35950 0.0 -
1.3046 36000 0.0 -
1.3064 36050 0.0 -
1.3083 36100 0.0 -
1.3101 36150 0.0 -
1.3119 36200 0.0 -
1.3137 36250 0.0 -
1.3155 36300 0.0 -
1.3173 36350 0.0 -
1.3191 36400 0.0 -
1.3209 36450 0.0 -
1.3228 36500 0.0 -
1.3246 36550 0.0 -
1.3264 36600 0.0 -
1.3282 36650 0.0 -
1.3300 36700 0.0 -
1.3318 36750 0.0 -
1.3336 36800 0.0 -
1.3354 36850 0.0 -
1.3372 36900 0.0 -
1.3391 36950 0.0 -
1.3409 37000 0.0 -
1.3427 37050 0.0 -
1.3445 37100 0.0 -
1.3463 37150 0.0 -
1.3481 37200 0.0 -
1.3499 37250 0.0 -
1.3517 37300 0.0 -
1.3536 37350 0.0 -
1.3554 37400 0.0 -
1.3572 37450 0.0 -
1.3590 37500 0.0 -
1.3608 37550 0.0 -
1.3626 37600 0.0 -
1.3644 37650 0.0 -
1.3662 37700 0.0 -
1.3681 37750 0.0 -
1.3699 37800 0.0 -
1.3717 37850 0.0 -
1.3735 37900 0.0 -
1.3753 37950 0.0 -
1.3771 38000 0.0 -
1.3789 38050 0.0 -
1.3807 38100 0.0 -
1.3825 38150 0.0 -
1.3844 38200 0.0 -
1.3862 38250 0.0 -
1.3880 38300 0.0 -
1.3898 38350 0.0 -
1.3916 38400 0.0 -
1.3934 38450 0.0 -
1.3952 38500 0.0 -
1.3970 38550 0.0 -
1.3989 38600 0.0 -
1.4007 38650 0.0 -
1.4025 38700 0.0 -
1.4043 38750 0.0 -
1.4061 38800 0.0 -
1.4079 38850 0.0 -
1.4097 38900 0.0 -
1.4115 38950 0.0 -
1.4134 39000 0.0 -
1.4152 39050 0.0 -
1.4170 39100 0.0 -
1.4188 39150 0.0 -
1.4206 39200 0.0 -
1.4224 39250 0.0 -
1.4242 39300 0.0 -
1.4260 39350 0.0 -
1.4278 39400 0.0 -
1.4297 39450 0.0 -
1.4315 39500 0.0 -
1.4333 39550 0.0 -
1.4351 39600 0.0 -
1.4369 39650 0.0 -
1.4387 39700 0.0 -
1.4405 39750 0.0 -
1.4423 39800 0.0 -
1.4442 39850 0.0 -
1.4460 39900 0.0 -
1.4478 39950 0.0 -
1.4496 40000 0.0 -
1.4514 40050 0.0 -
1.4532 40100 0.0 -
1.4550 40150 0.0 -
1.4568 40200 0.0 -
1.4587 40250 0.0 -
1.4605 40300 0.0 -
1.4623 40350 0.0 -
1.4641 40400 0.0 -
1.4659 40450 0.0 -
1.4677 40500 0.0 -
1.4695 40550 0.0 -
1.4713 40600 0.0 -
1.4731 40650 0.0 -
1.4750 40700 0.0 -
1.4768 40750 0.0 -
1.4786 40800 0.0 -
1.4804 40850 0.0 -
1.4822 40900 0.0 -
1.4840 40950 0.0 -
1.4858 41000 0.0 -
1.4876 41050 0.0 -
1.4895 41100 0.0 -
1.4913 41150 0.0 -
1.4931 41200 0.0 -
1.4949 41250 0.0 -
1.4967 41300 0.0 -
1.4985 41350 0.0 -
1.5003 41400 0.0 -
1.5021 41450 0.0 -
1.5040 41500 0.0 -
1.5058 41550 0.0 -
1.5076 41600 0.0 -
1.5094 41650 0.0 -
1.5112 41700 0.0 -
1.5130 41750 0.0 -
1.5148 41800 0.0 -
1.5166 41850 0.0 -
1.5184 41900 0.0 -
1.5203 41950 0.0 -
1.5221 42000 0.0 -
1.5239 42050 0.0 -
1.5257 42100 0.0 -
1.5275 42150 0.0 -
1.5293 42200 0.0 -
1.5311 42250 0.0 -
1.5329 42300 0.0 -
1.5348 42350 0.0 -
1.5366 42400 0.0 -
1.5384 42450 0.0 -
1.5402 42500 0.0 -
1.5420 42550 0.0 -
1.5438 42600 0.0 -
1.5456 42650 0.0 -
1.5474 42700 0.0 -
1.5492 42750 0.0 -
1.5511 42800 0.0 -
1.5529 42850 0.0 -
1.5547 42900 0.0 -
1.5565 42950 0.0 -
1.5583 43000 0.0 -
1.5601 43050 0.0 -
1.5619 43100 0.0 -
1.5637 43150 0.0 -
1.5656 43200 0.0 -
1.5674 43250 0.0 -
1.5692 43300 0.0 -
1.5710 43350 0.0 -
1.5728 43400 0.0 -
1.5746 43450 0.0 -
1.5764 43500 0.0 -
1.5782 43550 0.0 -
1.5801 43600 0.0 -
1.5819 43650 0.0 -
1.5837 43700 0.0 -
1.5855 43750 0.0 -
1.5873 43800 0.0 -
1.5891 43850 0.0 -
1.5909 43900 0.0 -
1.5927 43950 0.0 -
1.5945 44000 0.0 -
1.5964 44050 0.0 -
1.5982 44100 0.0 -
1.6000 44150 0.0 -
1.6018 44200 0.0 -
1.6036 44250 0.0 -
1.6054 44300 0.0 -
1.6072 44350 0.0 -
1.6090 44400 0.0 -
1.6109 44450 0.0 -
1.6127 44500 0.0 -
1.6145 44550 0.0 -
1.6163 44600 0.0 -
1.6181 44650 0.0 -
1.6199 44700 0.0 -
1.6217 44750 0.0 -
1.6235 44800 0.0 -
1.6254 44850 0.0 -
1.6272 44900 0.0 -
1.6290 44950 0.0 -
1.6308 45000 0.0 -
1.6326 45050 0.0 -
1.6344 45100 0.0 -
1.6362 45150 0.0 -
1.6380 45200 0.0 -
1.6398 45250 0.0 -
1.6417 45300 0.0 -
1.6435 45350 0.0 -
1.6453 45400 0.0 -
1.6471 45450 0.0 -
1.6489 45500 0.0 -
1.6507 45550 0.0 -
1.6525 45600 0.0 -
1.6543 45650 0.0 -
1.6562 45700 0.0 -
1.6580 45750 0.0 -
1.6598 45800 0.0 -
1.6616 45850 0.0 -
1.6634 45900 0.0 -
1.6652 45950 0.0 -
1.6670 46000 0.0 -
1.6688 46050 0.0 -
1.6707 46100 0.0 -
1.6725 46150 0.0 -
1.6743 46200 0.0 -
1.6761 46250 0.0 -
1.6779 46300 0.0 -
1.6797 46350 0.0 -
1.6815 46400 0.0 -
1.6833 46450 0.0 -
1.6851 46500 0.0 -
1.6870 46550 0.0 -
1.6888 46600 0.0 -
1.6906 46650 0.0 -
1.6924 46700 0.0 -
1.6942 46750 0.0 -
1.6960 46800 0.0 -
1.6978 46850 0.0 -
1.6996 46900 0.0 -
1.7015 46950 0.0 -
1.7033 47000 0.0 -
1.7051 47050 0.0 -
1.7069 47100 0.0 -
1.7087 47150 0.0 -
1.7105 47200 0.0 -
1.7123 47250 0.0 -
1.7141 47300 0.0 -
1.7160 47350 0.0 -
1.7178 47400 0.0 -
1.7196 47450 0.0 -
1.7214 47500 0.0 -
1.7232 47550 0.0 -
1.7250 47600 0.0 -
1.7268 47650 0.0 -
1.7286 47700 0.0 -
1.7304 47750 0.0 -
1.7323 47800 0.0 -
1.7341 47850 0.0 -
1.7359 47900 0.0 -
1.7377 47950 0.0 -
1.7395 48000 0.0 -
1.7413 48050 0.0 -
1.7431 48100 0.0 -
1.7449 48150 0.0 -
1.7468 48200 0.0 -
1.7486 48250 0.0 -
1.7504 48300 0.0 -
1.7522 48350 0.0 -
1.7540 48400 0.0 -
1.7558 48450 0.0 -
1.7576 48500 0.0 -
1.7594 48550 0.0 -
1.7613 48600 0.0 -
1.7631 48650 0.0 -
1.7649 48700 0.0 -
1.7667 48750 0.0 -
1.7685 48800 0.0 -
1.7703 48850 0.0 -
1.7721 48900 0.0 -
1.7739 48950 0.0 -
1.7757 49000 0.0 -
1.7776 49050 0.0 -
1.7794 49100 0.0 -
1.7812 49150 0.0 -
1.7830 49200 0.0 -
1.7848 49250 0.0 -
1.7866 49300 0.0 -
1.7884 49350 0.0 -
1.7902 49400 0.0 -
1.7921 49450 0.0 -
1.7939 49500 0.0 -
1.7957 49550 0.0 -
1.7975 49600 0.0 -
1.7993 49650 0.0 -
1.8011 49700 0.0 -
1.8029 49750 0.0 -
1.8047 49800 0.0 -
1.8066 49850 0.0 -
1.8084 49900 0.0 -
1.8102 49950 0.0 -
1.8120 50000 0.0 -
1.8138 50050 0.0 -
1.8156 50100 0.0 -
1.8174 50150 0.0 -
1.8192 50200 0.0 -
1.8210 50250 0.0 -
1.8229 50300 0.0 -
1.8247 50350 0.0 -
1.8265 50400 0.0 -
1.8283 50450 0.0 -
1.8301 50500 0.0 -
1.8319 50550 0.0 -
1.8337 50600 0.0 -
1.8355 50650 0.0 -
1.8374 50700 0.0 -
1.8392 50750 0.0 -
1.8410 50800 0.0 -
1.8428 50850 0.0 -
1.8446 50900 0.0 -
1.8464 50950 0.0 -
1.8482 51000 0.0 -
1.8500 51050 0.0 -
1.8519 51100 0.0 -
1.8537 51150 0.0 -
1.8555 51200 0.0 -
1.8573 51250 0.0 -
1.8591 51300 0.0 -
1.8609 51350 0.0 -
1.8627 51400 0.0 -
1.8645 51450 0.0 -
1.8663 51500 0.0 -
1.8682 51550 0.0 -
1.8700 51600 0.0 -
1.8718 51650 0.0 -
1.8736 51700 0.0 -
1.8754 51750 0.0 -
1.8772 51800 0.0 -
1.8790 51850 0.0 -
1.8808 51900 0.0 -
1.8827 51950 0.0 -
1.8845 52000 0.0 -
1.8863 52050 0.0 -
1.8881 52100 0.0 -
1.8899 52150 0.0 -
1.8917 52200 0.0 -
1.8935 52250 0.0 -
1.8953 52300 0.0 -
1.8972 52350 0.0 -
1.8990 52400 0.0 -
1.9008 52450 0.0 -
1.9026 52500 0.0 -
1.9044 52550 0.0 -
1.9062 52600 0.0 -
1.9080 52650 0.0 -
1.9098 52700 0.0 -
1.9116 52750 0.0 -
1.9135 52800 0.0 -
1.9153 52850 0.0 -
1.9171 52900 0.0 -
1.9189 52950 0.0 -
1.9207 53000 0.0 -
1.9225 53050 0.0 -
1.9243 53100 0.0 -
1.9261 53150 0.0 -
1.9280 53200 0.0 -
1.9298 53250 0.0 -
1.9316 53300 0.0 -
1.9334 53350 0.0 -
1.9352 53400 0.0 -
1.9370 53450 0.0 -
1.9388 53500 0.0 -
1.9406 53550 0.0 -
1.9425 53600 0.0 -
1.9443 53650 0.0 -
1.9461 53700 0.0 -
1.9479 53750 0.0 -
1.9497 53800 0.0 -
1.9515 53850 0.0 -
1.9533 53900 0.0 -
1.9551 53950 0.0 -
1.9569 54000 0.0 -
1.9588 54050 0.0 -
1.9606 54100 0.0 -
1.9624 54150 0.0 -
1.9642 54200 0.0 -
1.9660 54250 0.0 -
1.9678 54300 0.0 -
1.9696 54350 0.0 -
1.9714 54400 0.0 -
1.9733 54450 0.0 -
1.9751 54500 0.0 -
1.9769 54550 0.0 -
1.9787 54600 0.0 -
1.9805 54650 0.0 -
1.9823 54700 0.0 -
1.9841 54750 0.0 -
1.9859 54800 0.0 -
1.9878 54850 0.0 -
1.9896 54900 0.0 -
1.9914 54950 0.0 -
1.9932 55000 0.0 -
1.9950 55050 0.0 -
1.9968 55100 0.0 -
1.9986 55150 0.0 -
2.0004 55200 0.0 -
2.0022 55250 0.0 -
2.0041 55300 0.0 -
2.0059 55350 0.0 -
2.0077 55400 0.0 -
2.0095 55450 0.0 -
2.0113 55500 0.0 -
2.0131 55550 0.0 -
2.0149 55600 0.0 -
2.0167 55650 0.0 -
2.0186 55700 0.0 -
2.0204 55750 0.0 -
2.0222 55800 0.0 -
2.0240 55850 0.0 -
2.0258 55900 0.0 -
2.0276 55950 0.0 -
2.0294 56000 0.0 -
2.0312 56050 0.0 -
2.0331 56100 0.0 -
2.0349 56150 0.0 -
2.0367 56200 0.0 -
2.0385 56250 0.0 -
2.0403 56300 0.0 -
2.0421 56350 0.0 -
2.0439 56400 0.0 -
2.0457 56450 0.0 -
2.0475 56500 0.0 -
2.0494 56550 0.0 -
2.0512 56600 0.0 -
2.0530 56650 0.0 -
2.0548 56700 0.0 -
2.0566 56750 0.0 -
2.0584 56800 0.0 -
2.0602 56850 0.0 -
2.0620 56900 0.0 -
2.0639 56950 0.0 -
2.0657 57000 0.0 -
2.0675 57050 0.0 -
2.0693 57100 0.0 -
2.0711 57150 0.0 -
2.0729 57200 0.0 -
2.0747 57250 0.0 -
2.0765 57300 0.0 -
2.0784 57350 0.0 -
2.0802 57400 0.0 -
2.0820 57450 0.0 -
2.0838 57500 0.0 -
2.0856 57550 0.0 -
2.0874 57600 0.0 -
2.0892 57650 0.0 -
2.0910 57700 0.0 -
2.0928 57750 0.0 -
2.0947 57800 0.0 -
2.0965 57850 0.0 -
2.0983 57900 0.0 -
2.1001 57950 0.0 -
2.1019 58000 0.0 -
2.1037 58050 0.0 -
2.1055 58100 0.0 -
2.1073 58150 0.0 -
2.1092 58200 0.0 -
2.1110 58250 0.0 -
2.1128 58300 0.0 -
2.1146 58350 0.0 -
2.1164 58400 0.0 -
2.1182 58450 0.0 -
2.1200 58500 0.0 -
2.1218 58550 0.0 -
2.1237 58600 0.0 -
2.1255 58650 0.0 -
2.1273 58700 0.0 -
2.1291 58750 0.0 -
2.1309 58800 0.0 -
2.1327 58850 0.0 -
2.1345 58900 0.0 -
2.1363 58950 0.0 -
2.1381 59000 0.0 -
2.1400 59050 0.0 -
2.1418 59100 0.0 -
2.1436 59150 0.0 -
2.1454 59200 0.0 -
2.1472 59250 0.0 -
2.1490 59300 0.0 -
2.1508 59350 0.0 -
2.1526 59400 0.0 -
2.1545 59450 0.0 -
2.1563 59500 0.0 -
2.1581 59550 0.0 -
2.1599 59600 0.0 -
2.1617 59650 0.0 -
2.1635 59700 0.0 -
2.1653 59750 0.0 -
2.1671 59800 0.0 -
2.1689 59850 0.0 -
2.1708 59900 0.0 -
2.1726 59950 0.0 -
2.1744 60000 0.0 -
2.1762 60050 0.0 -
2.1780 60100 0.0 -
2.1798 60150 0.0 -
2.1816 60200 0.0 -
2.1834 60250 0.0 -
2.1853 60300 0.0 -
2.1871 60350 0.0 -
2.1889 60400 0.0 -
2.1907 60450 0.0 -
2.1925 60500 0.0 -
2.1943 60550 0.0 -
2.1961 60600 0.0 -
2.1979 60650 0.0 -
2.1998 60700 0.0 -
2.2016 60750 0.0 -
2.2034 60800 0.0 -
2.2052 60850 0.0 -
2.2070 60900 0.0 -
2.2088 60950 0.0 -
2.2106 61000 0.0 -
2.2124 61050 0.0 -
2.2142 61100 0.0 -
2.2161 61150 0.0 -
2.2179 61200 0.0 -
2.2197 61250 0.0 -
2.2215 61300 0.0 -
2.2233 61350 0.0 -
2.2251 61400 0.0 -
2.2269 61450 0.0 -
2.2287 61500 0.0 -
2.2306 61550 0.0 -
2.2324 61600 0.0 -
2.2342 61650 0.0 -
2.2360 61700 0.0 -
2.2378 61750 0.0 -
2.2396 61800 0.0 -
2.2414 61850 0.0 -
2.2432 61900 0.0 -
2.2451 61950 0.0 -
2.2469 62000 0.0 -
2.2487 62050 0.0 -
2.2505 62100 0.0 -
2.2523 62150 0.0 -
2.2541 62200 0.0 -
2.2559 62250 0.0 -
2.2577 62300 0.0 -
2.2595 62350 0.0 -
2.2614 62400 0.0 -
2.2632 62450 0.0 -
2.2650 62500 0.0 -
2.2668 62550 0.0 -
2.2686 62600 0.0 -
2.2704 62650 0.0 -
2.2722 62700 0.0 -
2.2740 62750 0.0 -
2.2759 62800 0.0 -
2.2777 62850 0.0 -
2.2795 62900 0.0 -
2.2813 62950 0.0 -
2.2831 63000 0.0 -
2.2849 63050 0.0 -
2.2867 63100 0.0 -
2.2885 63150 0.0 -
2.2904 63200 0.0 -
2.2922 63250 0.0 -
2.2940 63300 0.0 -
2.2958 63350 0.0 -
2.2976 63400 0.0 -
2.2994 63450 0.0 -
2.3012 63500 0.0 -
2.3030 63550 0.0 -
2.3048 63600 0.0 -
2.3067 63650 0.0 -
2.3085 63700 0.0 -
2.3103 63750 0.0 -
2.3121 63800 0.0 -
2.3139 63850 0.0 -
2.3157 63900 0.0 -
2.3175 63950 0.0 -
2.3193 64000 0.0 -
2.3212 64050 0.0 -
2.3230 64100 0.0 -
2.3248 64150 0.0 -
2.3266 64200 0.0 -
2.3284 64250 0.0 -
2.3302 64300 0.0 -
2.3320 64350 0.0 -
2.3338 64400 0.0 -
2.3357 64450 0.0 -
2.3375 64500 0.0 -
2.3393 64550 0.0 -
2.3411 64600 0.0 -
2.3429 64650 0.0 -
2.3447 64700 0.0 -
2.3465 64750 0.0 -
2.3483 64800 0.0 -
2.3501 64850 0.0 -
2.3520 64900 0.0 -
2.3538 64950 0.0 -
2.3556 65000 0.0 -
2.3574 65050 0.0 -
2.3592 65100 0.0 -
2.3610 65150 0.0 -
2.3628 65200 0.0 -
2.3646 65250 0.0 -
2.3665 65300 0.0 -
2.3683 65350 0.0 -
2.3701 65400 0.0 -
2.3719 65450 0.0 -
2.3737 65500 0.0 -
2.3755 65550 0.0 -
2.3773 65600 0.0 -
2.3791 65650 0.0 -
2.3810 65700 0.0 -
2.3828 65750 0.0 -
2.3846 65800 0.0 -
2.3864 65850 0.0 -
2.3882 65900 0.0 -
2.3900 65950 0.0 -
2.3918 66000 0.0 -
2.3936 66050 0.0 -
2.3954 66100 0.0 -
2.3973 66150 0.0 -
2.3991 66200 0.0 -
2.4009 66250 0.0 -
2.4027 66300 0.0 -
2.4045 66350 0.0 -
2.4063 66400 0.0 -
2.4081 66450 0.0 -
2.4099 66500 0.0 -
2.4118 66550 0.0 -
2.4136 66600 0.0 -
2.4154 66650 0.0 -
2.4172 66700 0.0 -
2.4190 66750 0.0 -
2.4208 66800 0.0 -
2.4226 66850 0.0 -
2.4244 66900 0.0 -
2.4263 66950 0.0 -
2.4281 67000 0.0 -
2.4299 67050 0.0 -
2.4317 67100 0.0 -
2.4335 67150 0.0 -
2.4353 67200 0.0 -
2.4371 67250 0.0 -
2.4389 67300 0.0 -
2.4407 67350 0.0 -
2.4426 67400 0.0 -
2.4444 67450 0.0 -
2.4462 67500 0.0 -
2.4480 67550 0.0 -
2.4498 67600 0.0 -
2.4516 67650 0.0 -
2.4534 67700 0.0 -
2.4552 67750 0.0 -
2.4571 67800 0.0 -
2.4589 67850 0.0 -
2.4607 67900 0.0 -
2.4625 67950 0.0 -
2.4643 68000 0.0 -
2.4661 68050 0.0 -
2.4679 68100 0.0 -
2.4697 68150 0.0 -
2.4716 68200 0.0 -
2.4734 68250 0.0 -
2.4752 68300 0.0 -
2.4770 68350 0.0 -
2.4788 68400 0.0 -
2.4806 68450 0.0 -
2.4824 68500 0.0 -
2.4842 68550 0.0 -
2.4860 68600 0.0 -
2.4879 68650 0.0 -
2.4897 68700 0.0 -
2.4915 68750 0.0 -
2.4933 68800 0.0 -
2.4951 68850 0.0 -
2.4969 68900 0.0 -
2.4987 68950 0.0 -
2.5005 69000 0.0 -
2.5024 69050 0.0 -
2.5042 69100 0.0 -
2.5060 69150 0.0 -
2.5078 69200 0.0 -
2.5096 69250 0.0 -
2.5114 69300 0.0 -
2.5132 69350 0.0 -
2.5150 69400 0.0 -
2.5169 69450 0.0 -
2.5187 69500 0.0 -
2.5205 69550 0.0 -
2.5223 69600 0.0 -
2.5241 69650 0.0 -
2.5259 69700 0.0 -
2.5277 69750 0.0 -
2.5295 69800 0.0 -
2.5313 69850 0.0 -
2.5332 69900 0.0 -
2.5350 69950 0.0 -
2.5368 70000 0.0 -
2.5386 70050 0.0 -
2.5404 70100 0.0 -
2.5422 70150 0.0 -
2.5440 70200 0.0 -
2.5458 70250 0.0 -
2.5477 70300 0.0 -
2.5495 70350 0.0 -
2.5513 70400 0.0 -
2.5531 70450 0.0 -
2.5549 70500 0.0 -
2.5567 70550 0.0 -
2.5585 70600 0.0 -
2.5603 70650 0.0 -
2.5622 70700 0.0 -
2.5640 70750 0.0 -
2.5658 70800 0.0 -
2.5676 70850 0.0 -
2.5694 70900 0.0 -
2.5712 70950 0.0 -
2.5730 71000 0.0 -
2.5748 71050 0.0 -
2.5766 71100 0.0 -
2.5785 71150 0.0 -
2.5803 71200 0.0 -
2.5821 71250 0.0 -
2.5839 71300 0.0 -
2.5857 71350 0.0 -
2.5875 71400 0.0 -
2.5893 71450 0.0 -
2.5911 71500 0.0 -
2.5930 71550 0.0 -
2.5948 71600 0.0 -
2.5966 71650 0.0 -
2.5984 71700 0.0 -
2.6002 71750 0.0 -
2.6020 71800 0.0 -
2.6038 71850 0.0 -
2.6056 71900 0.0 -
2.6075 71950 0.0 -
2.6093 72000 0.0 -
2.6111 72050 0.0 -
2.6129 72100 0.0 -
2.6147 72150 0.0 -
2.6165 72200 0.0 -
2.6183 72250 0.0 -
2.6201 72300 0.0 -
2.6219 72350 0.0 -
2.6238 72400 0.0 -
2.6256 72450 0.0 -
2.6274 72500 0.0 -
2.6292 72550 0.0 -
2.6310 72600 0.0 -
2.6328 72650 0.0 -
2.6346 72700 0.0 -
2.6364 72750 0.0 -
2.6383 72800 0.0 -
2.6401 72850 0.0 -
2.6419 72900 0.0 -
2.6437 72950 0.0 -
2.6455 73000 0.0 -
2.6473 73050 0.0 -
2.6491 73100 0.0 -
2.6509 73150 0.0 -
2.6528 73200 0.0 -
2.6546 73250 0.0 -
2.6564 73300 0.0 -
2.6582 73350 0.0 -
2.6600 73400 0.0 -
2.6618 73450 0.0 -
2.6636 73500 0.0 -
2.6654 73550 0.0 -
2.6672 73600 0.0 -
2.6691 73650 0.0 -
2.6709 73700 0.0 -
2.6727 73750 0.0 -
2.6745 73800 0.0 -
2.6763 73850 0.0 -
2.6781 73900 0.0 -
2.6799 73950 0.0 -
2.6817 74000 0.0 -
2.6836 74050 0.0 -
2.6854 74100 0.0 -
2.6872 74150 0.0 -
2.6890 74200 0.0 -
2.6908 74250 0.0 -
2.6926 74300 0.0 -
2.6944 74350 0.0 -
2.6962 74400 0.0 -
2.6981 74450 0.0 -
2.6999 74500 0.0 -
2.7017 74550 0.0 -
2.7035 74600 0.0 -
2.7053 74650 0.0 -
2.7071 74700 0.0 -
2.7089 74750 0.0 -
2.7107 74800 0.0 -
2.7125 74850 0.0 -
2.7144 74900 0.0 -
2.7162 74950 0.0 -
2.7180 75000 0.0 -
2.7198 75050 0.0 -
2.7216 75100 0.0 -
2.7234 75150 0.0 -
2.7252 75200 0.0 -
2.7270 75250 0.0 -
2.7289 75300 0.0 -
2.7307 75350 0.0 -
2.7325 75400 0.0 -
2.7343 75450 0.0 -
2.7361 75500 0.0 -
2.7379 75550 0.0 -
2.7397 75600 0.0 -
2.7415 75650 0.0 -
2.7434 75700 0.0 -
2.7452 75750 0.0 -
2.7470 75800 0.0 -
2.7488 75850 0.0 -
2.7506 75900 0.0 -
2.7524 75950 0.0 -
2.7542 76000 0.0 -
2.7560 76050 0.0 -
2.7578 76100 0.0 -
2.7597 76150 0.0 -
2.7615 76200 0.0 -
2.7633 76250 0.0 -
2.7651 76300 0.0 -
2.7669 76350 0.0 -
2.7687 76400 0.0 -
2.7705 76450 0.0 -
2.7723 76500 0.0 -
2.7742 76550 0.0 -
2.7760 76600 0.0 -
2.7778 76650 0.0 -
2.7796 76700 0.0 -
2.7814 76750 0.0 -
2.7832 76800 0.0 -
2.7850 76850 0.0 -
2.7868 76900 0.0 -
2.7886 76950 0.0 -
2.7905 77000 0.0 -
2.7923 77050 0.0 -
2.7941 77100 0.0 -
2.7959 77150 0.0 -
2.7977 77200 0.0 -
2.7995 77250 0.0 -
2.8013 77300 0.0 -
2.8031 77350 0.0 -
2.8050 77400 0.0 -
2.8068 77450 0.0 -
2.8086 77500 0.0 -
2.8104 77550 0.0 -
2.8122 77600 0.0 -
2.8140 77650 0.0 -
2.8158 77700 0.0 -
2.8176 77750 0.0 -
2.8195 77800 0.0 -
2.8213 77850 0.0 -
2.8231 77900 0.0 -
2.8249 77950 0.0 -
2.8267 78000 0.0 -
2.8285 78050 0.0 -
2.8303 78100 0.0 -
2.8321 78150 0.0 -
2.8339 78200 0.0 -
2.8358 78250 0.0 -
2.8376 78300 0.0 -
2.8394 78350 0.0 -
2.8412 78400 0.0 -
2.8430 78450 0.0 -
2.8448 78500 0.0 -
2.8466 78550 0.0 -
2.8484 78600 0.0 -
2.8503 78650 0.0 -
2.8521 78700 0.0 -
2.8539 78750 0.0 -
2.8557 78800 0.0 -
2.8575 78850 0.0 -
2.8593 78900 0.0 -
2.8611 78950 0.0 -
2.8629 79000 0.0 -
2.8648 79050 0.0 -
2.8666 79100 0.0 -
2.8684 79150 0.0 -
2.8702 79200 0.0 -
2.8720 79250 0.0 -
2.8738 79300 0.0 -
2.8756 79350 0.0 -
2.8774 79400 0.0 -
2.8792 79450 0.0 -
2.8811 79500 0.0 -
2.8829 79550 0.0 -
2.8847 79600 0.0 -
2.8865 79650 0.0 -
2.8883 79700 0.0 -
2.8901 79750 0.0 -
2.8919 79800 0.0 -
2.8937 79850 0.0 -
2.8956 79900 0.0 -
2.8974 79950 0.0 -
2.8992 80000 0.0 -
2.9010 80050 0.0 -
2.9028 80100 0.0 -
2.9046 80150 0.0 -
2.9064 80200 0.0 -
2.9082 80250 0.0 -
2.9101 80300 0.0 -
2.9119 80350 0.0 -
2.9137 80400 0.0 -
2.9155 80450 0.0 -
2.9173 80500 0.0 -
2.9191 80550 0.0 -
2.9209 80600 0.0 -
2.9227 80650 0.0 -
2.9245 80700 0.0 -
2.9264 80750 0.0 -
2.9282 80800 0.0 -
2.9300 80850 0.0 -
2.9318 80900 0.0 -
2.9336 80950 0.0 -
2.9354 81000 0.0 -
2.9372 81050 0.0 -
2.9390 81100 0.0 -
2.9409 81150 0.0 -
2.9427 81200 0.0 -
2.9445 81250 0.0 -
2.9463 81300 0.0 -
2.9481 81350 0.0 -
2.9499 81400 0.0 -
2.9517 81450 0.0 -
2.9535 81500 0.0 -
2.9554 81550 0.0 -
2.9572 81600 0.0 -
2.9590 81650 0.0 -
2.9608 81700 0.0 -
2.9626 81750 0.0 -
2.9644 81800 0.0 -
2.9662 81850 0.0 -
2.9680 81900 0.0 -
2.9698 81950 0.0 -
2.9717 82000 0.0 -
2.9735 82050 0.0 -
2.9753 82100 0.0 -
2.9771 82150 0.0 -
2.9789 82200 0.0 -
2.9807 82250 0.0 -
2.9825 82300 0.0 -
2.9843 82350 0.0 -
2.9862 82400 0.0 -
2.9880 82450 0.0 -
2.9898 82500 0.0 -
2.9916 82550 0.0 -
2.9934 82600 0.0 -
2.9952 82650 0.0 -
2.9970 82700 0.0 -
2.9988 82750 0.0 -

Framework Versions

  • Python: 3.11.11
  • SetFit: 1.1.1
  • Sentence Transformers: 3.3.1
  • Transformers: 4.42.2
  • PyTorch: 2.5.1+cu121
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
8
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cbpuschmann/klimacoder_speedlimit_v0.1

Evaluation results