SetFit with sentence-transformers/all-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 384 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
neutral |
|
opposed |
|
supportive |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9462 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("cbpuschmann/all-mpnet-base-klimacoder_v0.7")
# Run inference
preds = model(" Diese selbsternannten Klimaretter blockieren wieder einmal die Straßen und sorgen für Chaos, während der Rest der Welt zur Arbeit gehen muss.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 10 | 25.6075 | 57 |
Label | Training Sample Count |
---|---|
neutral | 329 |
opposed | 395 |
supportive | 392 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.2421 | - |
0.0019 | 50 | 0.259 | - |
0.0039 | 100 | 0.2536 | - |
0.0058 | 150 | 0.25 | - |
0.0077 | 200 | 0.243 | - |
0.0097 | 250 | 0.2441 | - |
0.0116 | 300 | 0.2377 | - |
0.0135 | 350 | 0.2247 | - |
0.0155 | 400 | 0.2031 | - |
0.0174 | 450 | 0.1656 | - |
0.0193 | 500 | 0.1383 | - |
0.0213 | 550 | 0.1383 | - |
0.0232 | 600 | 0.1155 | - |
0.0251 | 650 | 0.1007 | - |
0.0271 | 700 | 0.0741 | - |
0.0290 | 750 | 0.063 | - |
0.0309 | 800 | 0.0428 | - |
0.0329 | 850 | 0.0304 | - |
0.0348 | 900 | 0.0243 | - |
0.0367 | 950 | 0.0189 | - |
0.0387 | 1000 | 0.0135 | - |
0.0406 | 1050 | 0.0089 | - |
0.0425 | 1100 | 0.0115 | - |
0.0445 | 1150 | 0.0071 | - |
0.0464 | 1200 | 0.0068 | - |
0.0483 | 1250 | 0.0057 | - |
0.0503 | 1300 | 0.0052 | - |
0.0522 | 1350 | 0.0063 | - |
0.0541 | 1400 | 0.0064 | - |
0.0561 | 1450 | 0.006 | - |
0.0580 | 1500 | 0.0035 | - |
0.0599 | 1550 | 0.008 | - |
0.0619 | 1600 | 0.0069 | - |
0.0638 | 1650 | 0.0021 | - |
0.0657 | 1700 | 0.0037 | - |
0.0677 | 1750 | 0.0034 | - |
0.0696 | 1800 | 0.0049 | - |
0.0715 | 1850 | 0.0024 | - |
0.0735 | 1900 | 0.0085 | - |
0.0754 | 1950 | 0.0075 | - |
0.0773 | 2000 | 0.0073 | - |
0.0793 | 2050 | 0.0031 | - |
0.0812 | 2100 | 0.0031 | - |
0.0831 | 2150 | 0.0017 | - |
0.0851 | 2200 | 0.0024 | - |
0.0870 | 2250 | 0.0026 | - |
0.0889 | 2300 | 0.0033 | - |
0.0909 | 2350 | 0.0097 | - |
0.0928 | 2400 | 0.0079 | - |
0.0947 | 2450 | 0.0028 | - |
0.0967 | 2500 | 0.0021 | - |
0.0986 | 2550 | 0.0015 | - |
0.1005 | 2600 | 0.0018 | - |
0.1025 | 2650 | 0.0028 | - |
0.1044 | 2700 | 0.0045 | - |
0.1063 | 2750 | 0.0029 | - |
0.1083 | 2800 | 0.0007 | - |
0.1102 | 2850 | 0.0 | - |
0.1121 | 2900 | 0.0008 | - |
0.1141 | 2950 | 0.0017 | - |
0.1160 | 3000 | 0.0018 | - |
0.1179 | 3050 | 0.0014 | - |
0.1199 | 3100 | 0.0012 | - |
0.1218 | 3150 | 0.001 | - |
0.1237 | 3200 | 0.0016 | - |
0.1257 | 3250 | 0.0043 | - |
0.1276 | 3300 | 0.0001 | - |
0.1295 | 3350 | 0.0017 | - |
0.1315 | 3400 | 0.0003 | - |
0.1334 | 3450 | 0.0004 | - |
0.1353 | 3500 | 0.0014 | - |
0.1373 | 3550 | 0.0001 | - |
0.1392 | 3600 | 0.0 | - |
0.1411 | 3650 | 0.0012 | - |
0.1431 | 3700 | 0.0005 | - |
0.1450 | 3750 | 0.0 | - |
0.1469 | 3800 | 0.0 | - |
0.1489 | 3850 | 0.0 | - |
0.1508 | 3900 | 0.0 | - |
0.1527 | 3950 | 0.0 | - |
0.1547 | 4000 | 0.0061 | - |
0.1566 | 4050 | 0.0014 | - |
0.1585 | 4100 | 0.0005 | - |
0.1605 | 4150 | 0.0005 | - |
0.1624 | 4200 | 0.0001 | - |
0.1643 | 4250 | 0.0003 | - |
0.1663 | 4300 | 0.0033 | - |
0.1682 | 4350 | 0.0049 | - |
0.1701 | 4400 | 0.0012 | - |
0.1721 | 4450 | 0.0 | - |
0.1740 | 4500 | 0.0012 | - |
0.1759 | 4550 | 0.0006 | - |
0.1779 | 4600 | 0.0 | - |
0.1798 | 4650 | 0.0 | - |
0.1817 | 4700 | 0.0 | - |
0.1837 | 4750 | 0.0 | - |
0.1856 | 4800 | 0.0 | - |
0.1875 | 4850 | 0.0 | - |
0.1895 | 4900 | 0.0 | - |
0.1914 | 4950 | 0.0 | - |
0.1933 | 5000 | 0.0 | - |
0.1953 | 5050 | 0.0 | - |
0.1972 | 5100 | 0.0 | - |
0.1991 | 5150 | 0.0 | - |
0.2011 | 5200 | 0.0 | - |
0.2030 | 5250 | 0.0 | - |
0.2049 | 5300 | 0.0091 | - |
0.2069 | 5350 | 0.0118 | - |
0.2088 | 5400 | 0.0032 | - |
0.2107 | 5450 | 0.0009 | - |
0.2127 | 5500 | 0.0011 | - |
0.2146 | 5550 | 0.0015 | - |
0.2165 | 5600 | 0.0026 | - |
0.2185 | 5650 | 0.0016 | - |
0.2204 | 5700 | 0.0 | - |
0.2223 | 5750 | 0.0019 | - |
0.2243 | 5800 | 0.0039 | - |
0.2262 | 5850 | 0.0005 | - |
0.2281 | 5900 | 0.0006 | - |
0.2301 | 5950 | 0.0015 | - |
0.2320 | 6000 | 0.0018 | - |
0.2339 | 6050 | 0.0012 | - |
0.2359 | 6100 | 0.0042 | - |
0.2378 | 6150 | 0.0016 | - |
0.2397 | 6200 | 0.0011 | - |
0.2417 | 6250 | 0.0 | - |
0.2436 | 6300 | 0.0 | - |
0.2455 | 6350 | 0.0025 | - |
0.2475 | 6400 | 0.0012 | - |
0.2494 | 6450 | 0.0 | - |
0.2513 | 6500 | 0.0 | - |
0.2533 | 6550 | 0.0 | - |
0.2552 | 6600 | 0.0 | - |
0.2571 | 6650 | 0.0 | - |
0.2591 | 6700 | 0.0 | - |
0.2610 | 6750 | 0.0 | - |
0.2629 | 6800 | 0.0 | - |
0.2649 | 6850 | 0.0 | - |
0.2668 | 6900 | 0.0 | - |
0.2687 | 6950 | 0.0 | - |
0.2707 | 7000 | 0.0 | - |
0.2726 | 7050 | 0.0 | - |
0.2745 | 7100 | 0.0 | - |
0.2765 | 7150 | 0.0 | - |
0.2784 | 7200 | 0.0 | - |
0.2803 | 7250 | 0.0 | - |
0.2823 | 7300 | 0.0 | - |
0.2842 | 7350 | 0.0 | - |
0.2861 | 7400 | 0.0 | - |
0.2881 | 7450 | 0.0 | - |
0.2900 | 7500 | 0.0 | - |
0.2919 | 7550 | 0.0 | - |
0.2939 | 7600 | 0.0 | - |
0.2958 | 7650 | 0.0 | - |
0.2977 | 7700 | 0.0 | - |
0.2997 | 7750 | 0.0 | - |
0.3016 | 7800 | 0.0 | - |
0.3035 | 7850 | 0.0 | - |
0.3055 | 7900 | 0.0 | - |
0.3074 | 7950 | 0.0 | - |
0.3093 | 8000 | 0.0 | - |
0.3113 | 8050 | 0.0 | - |
0.3132 | 8100 | 0.0 | - |
0.3151 | 8150 | 0.0 | - |
0.3171 | 8200 | 0.0 | - |
0.3190 | 8250 | 0.0 | - |
0.3209 | 8300 | 0.0 | - |
0.3229 | 8350 | 0.0 | - |
0.3248 | 8400 | 0.0 | - |
0.3267 | 8450 | 0.0 | - |
0.3287 | 8500 | 0.0 | - |
0.3306 | 8550 | 0.0 | - |
0.3325 | 8600 | 0.0 | - |
0.3345 | 8650 | 0.0 | - |
0.3364 | 8700 | 0.0 | - |
0.3383 | 8750 | 0.0 | - |
0.3403 | 8800 | 0.0 | - |
0.3422 | 8850 | 0.0 | - |
0.3441 | 8900 | 0.0 | - |
0.3461 | 8950 | 0.0 | - |
0.3480 | 9000 | 0.0 | - |
0.3499 | 9050 | 0.0 | - |
0.3519 | 9100 | 0.0 | - |
0.3538 | 9150 | 0.0 | - |
0.3557 | 9200 | 0.0 | - |
0.3577 | 9250 | 0.0 | - |
0.3596 | 9300 | 0.0 | - |
0.3615 | 9350 | 0.0 | - |
0.3635 | 9400 | 0.0 | - |
0.3654 | 9450 | 0.0081 | - |
0.3673 | 9500 | 0.0078 | - |
0.3693 | 9550 | 0.0104 | - |
0.3712 | 9600 | 0.0034 | - |
0.3731 | 9650 | 0.0009 | - |
0.3751 | 9700 | 0.0006 | - |
0.3770 | 9750 | 0.0033 | - |
0.3789 | 9800 | 0.0007 | - |
0.3809 | 9850 | 0.0 | - |
0.3828 | 9900 | 0.0 | - |
0.3847 | 9950 | 0.0 | - |
0.3867 | 10000 | 0.0006 | - |
0.3886 | 10050 | 0.0 | - |
0.3905 | 10100 | 0.0 | - |
0.3925 | 10150 | 0.0 | - |
0.3944 | 10200 | 0.0 | - |
0.3963 | 10250 | 0.0 | - |
0.3983 | 10300 | 0.0 | - |
0.4002 | 10350 | 0.0 | - |
0.4021 | 10400 | 0.0 | - |
0.4041 | 10450 | 0.0019 | - |
0.4060 | 10500 | 0.0035 | - |
0.4080 | 10550 | 0.0012 | - |
0.4099 | 10600 | 0.0 | - |
0.4118 | 10650 | 0.0 | - |
0.4138 | 10700 | 0.0 | - |
0.4157 | 10750 | 0.0 | - |
0.4176 | 10800 | 0.0 | - |
0.4196 | 10850 | 0.0 | - |
0.4215 | 10900 | 0.0 | - |
0.4234 | 10950 | 0.0006 | - |
0.4254 | 11000 | 0.0 | - |
0.4273 | 11050 | 0.0 | - |
0.4292 | 11100 | 0.0 | - |
0.4312 | 11150 | 0.0 | - |
0.4331 | 11200 | 0.0 | - |
0.4350 | 11250 | 0.0 | - |
0.4370 | 11300 | 0.0 | - |
0.4389 | 11350 | 0.0 | - |
0.4408 | 11400 | 0.0 | - |
0.4428 | 11450 | 0.0 | - |
0.4447 | 11500 | 0.0 | - |
0.4466 | 11550 | 0.0 | - |
0.4486 | 11600 | 0.0 | - |
0.4505 | 11650 | 0.0 | - |
0.4524 | 11700 | 0.0 | - |
0.4544 | 11750 | 0.0 | - |
0.4563 | 11800 | 0.0 | - |
0.4582 | 11850 | 0.0 | - |
0.4602 | 11900 | 0.0 | - |
0.4621 | 11950 | 0.0 | - |
0.4640 | 12000 | 0.0 | - |
0.4660 | 12050 | 0.0 | - |
0.4679 | 12100 | 0.0 | - |
0.4698 | 12150 | 0.0 | - |
0.4718 | 12200 | 0.0 | - |
0.4737 | 12250 | 0.0 | - |
0.4756 | 12300 | 0.0 | - |
0.4776 | 12350 | 0.0 | - |
0.4795 | 12400 | 0.0 | - |
0.4814 | 12450 | 0.0 | - |
0.4834 | 12500 | 0.0 | - |
0.4853 | 12550 | 0.0 | - |
0.4872 | 12600 | 0.0 | - |
0.4892 | 12650 | 0.0 | - |
0.4911 | 12700 | 0.0 | - |
0.4930 | 12750 | 0.0 | - |
0.4950 | 12800 | 0.0 | - |
0.4969 | 12850 | 0.0 | - |
0.4988 | 12900 | 0.0 | - |
0.5008 | 12950 | 0.0 | - |
0.5027 | 13000 | 0.0 | - |
0.5046 | 13050 | 0.0 | - |
0.5066 | 13100 | 0.0 | - |
0.5085 | 13150 | 0.0 | - |
0.5104 | 13200 | 0.0 | - |
0.5124 | 13250 | 0.0 | - |
0.5143 | 13300 | 0.0 | - |
0.5162 | 13350 | 0.0 | - |
0.5182 | 13400 | 0.0 | - |
0.5201 | 13450 | 0.0 | - |
0.5220 | 13500 | 0.0 | - |
0.5240 | 13550 | 0.0 | - |
0.5259 | 13600 | 0.0 | - |
0.5278 | 13650 | 0.0 | - |
0.5298 | 13700 | 0.0 | - |
0.5317 | 13750 | 0.0 | - |
0.5336 | 13800 | 0.0 | - |
0.5356 | 13850 | 0.0 | - |
0.5375 | 13900 | 0.0 | - |
0.5394 | 13950 | 0.0 | - |
0.5414 | 14000 | 0.0 | - |
0.5433 | 14050 | 0.0 | - |
0.5452 | 14100 | 0.0 | - |
0.5472 | 14150 | 0.0 | - |
0.5491 | 14200 | 0.0 | - |
0.5510 | 14250 | 0.0 | - |
0.5530 | 14300 | 0.0 | - |
0.5549 | 14350 | 0.0 | - |
0.5568 | 14400 | 0.0 | - |
0.5588 | 14450 | 0.0 | - |
0.5607 | 14500 | 0.0 | - |
0.5626 | 14550 | 0.0 | - |
0.5646 | 14600 | 0.0 | - |
0.5665 | 14650 | 0.0 | - |
0.5684 | 14700 | 0.0 | - |
0.5704 | 14750 | 0.0 | - |
0.5723 | 14800 | 0.0 | - |
0.5742 | 14850 | 0.0 | - |
0.5762 | 14900 | 0.0 | - |
0.5781 | 14950 | 0.0 | - |
0.5800 | 15000 | 0.0 | - |
0.5820 | 15050 | 0.0 | - |
0.5839 | 15100 | 0.0 | - |
0.5858 | 15150 | 0.0 | - |
0.5878 | 15200 | 0.0 | - |
0.5897 | 15250 | 0.0 | - |
0.5916 | 15300 | 0.0 | - |
0.5936 | 15350 | 0.0 | - |
0.5955 | 15400 | 0.0 | - |
0.5974 | 15450 | 0.0 | - |
0.5994 | 15500 | 0.0 | - |
0.6013 | 15550 | 0.0 | - |
0.6032 | 15600 | 0.0 | - |
0.6052 | 15650 | 0.0 | - |
0.6071 | 15700 | 0.0 | - |
0.6090 | 15750 | 0.0 | - |
0.6110 | 15800 | 0.0 | - |
0.6129 | 15850 | 0.0 | - |
0.6148 | 15900 | 0.0 | - |
0.6168 | 15950 | 0.0 | - |
0.6187 | 16000 | 0.0 | - |
0.6206 | 16050 | 0.0 | - |
0.6226 | 16100 | 0.0 | - |
0.6245 | 16150 | 0.0 | - |
0.6264 | 16200 | 0.0 | - |
0.6284 | 16250 | 0.0 | - |
0.6303 | 16300 | 0.0 | - |
0.6322 | 16350 | 0.0 | - |
0.6342 | 16400 | 0.0 | - |
0.6361 | 16450 | 0.0 | - |
0.6380 | 16500 | 0.0 | - |
0.6400 | 16550 | 0.0 | - |
0.6419 | 16600 | 0.0 | - |
0.6438 | 16650 | 0.0 | - |
0.6458 | 16700 | 0.0 | - |
0.6477 | 16750 | 0.0 | - |
0.6496 | 16800 | 0.0 | - |
0.6516 | 16850 | 0.0 | - |
0.6535 | 16900 | 0.0 | - |
0.6554 | 16950 | 0.0 | - |
0.6574 | 17000 | 0.0 | - |
0.6593 | 17050 | 0.0 | - |
0.6612 | 17100 | 0.0 | - |
0.6632 | 17150 | 0.0 | - |
0.6651 | 17200 | 0.0 | - |
0.6670 | 17250 | 0.0 | - |
0.6690 | 17300 | 0.0 | - |
0.6709 | 17350 | 0.0 | - |
0.6728 | 17400 | 0.0 | - |
0.6748 | 17450 | 0.0 | - |
0.6767 | 17500 | 0.0 | - |
0.6786 | 17550 | 0.0 | - |
0.6806 | 17600 | 0.0 | - |
0.6825 | 17650 | 0.0 | - |
0.6844 | 17700 | 0.0 | - |
0.6864 | 17750 | 0.0 | - |
0.6883 | 17800 | 0.0 | - |
0.6902 | 17850 | 0.0 | - |
0.6922 | 17900 | 0.0 | - |
0.6941 | 17950 | 0.0 | - |
0.6960 | 18000 | 0.0 | - |
0.6980 | 18050 | 0.0 | - |
0.6999 | 18100 | 0.0 | - |
0.7018 | 18150 | 0.0 | - |
0.7038 | 18200 | 0.0 | - |
0.7057 | 18250 | 0.0 | - |
0.7076 | 18300 | 0.0 | - |
0.7096 | 18350 | 0.0 | - |
0.7115 | 18400 | 0.0 | - |
0.7134 | 18450 | 0.0 | - |
0.7154 | 18500 | 0.0 | - |
0.7173 | 18550 | 0.0 | - |
0.7192 | 18600 | 0.0 | - |
0.7212 | 18650 | 0.0 | - |
0.7231 | 18700 | 0.0 | - |
0.7250 | 18750 | 0.0 | - |
0.7270 | 18800 | 0.0 | - |
0.7289 | 18850 | 0.0 | - |
0.7308 | 18900 | 0.0 | - |
0.7328 | 18950 | 0.0 | - |
0.7347 | 19000 | 0.0 | - |
0.7366 | 19050 | 0.0 | - |
0.7386 | 19100 | 0.0 | - |
0.7405 | 19150 | 0.0 | - |
0.7424 | 19200 | 0.0 | - |
0.7444 | 19250 | 0.0 | - |
0.7463 | 19300 | 0.0 | - |
0.7482 | 19350 | 0.0 | - |
0.7502 | 19400 | 0.0 | - |
0.7521 | 19450 | 0.0 | - |
0.7540 | 19500 | 0.0 | - |
0.7560 | 19550 | 0.0 | - |
0.7579 | 19600 | 0.0 | - |
0.7598 | 19650 | 0.0 | - |
0.7618 | 19700 | 0.0 | - |
0.7637 | 19750 | 0.0 | - |
0.7656 | 19800 | 0.0 | - |
0.7676 | 19850 | 0.0 | - |
0.7695 | 19900 | 0.0 | - |
0.7714 | 19950 | 0.0 | - |
0.7734 | 20000 | 0.0 | - |
0.7753 | 20050 | 0.0 | - |
0.7772 | 20100 | 0.0 | - |
0.7792 | 20150 | 0.0 | - |
0.7811 | 20200 | 0.0 | - |
0.7830 | 20250 | 0.0 | - |
0.7850 | 20300 | 0.0 | - |
0.7869 | 20350 | 0.0 | - |
0.7888 | 20400 | 0.0 | - |
0.7908 | 20450 | 0.0 | - |
0.7927 | 20500 | 0.0 | - |
0.7946 | 20550 | 0.0 | - |
0.7966 | 20600 | 0.0 | - |
0.7985 | 20650 | 0.0 | - |
0.8004 | 20700 | 0.0 | - |
0.8024 | 20750 | 0.0 | - |
0.8043 | 20800 | 0.0 | - |
0.8062 | 20850 | 0.0 | - |
0.8082 | 20900 | 0.0 | - |
0.8101 | 20950 | 0.0 | - |
0.8120 | 21000 | 0.0 | - |
0.8140 | 21050 | 0.0 | - |
0.8159 | 21100 | 0.0 | - |
0.8178 | 21150 | 0.0 | - |
0.8198 | 21200 | 0.0002 | - |
0.8217 | 21250 | 0.0027 | - |
0.8236 | 21300 | 0.0019 | - |
0.8256 | 21350 | 0.0 | - |
0.8275 | 21400 | 0.0 | - |
0.8294 | 21450 | 0.0 | - |
0.8314 | 21500 | 0.0 | - |
0.8333 | 21550 | 0.0011 | - |
0.8352 | 21600 | 0.0 | - |
0.8372 | 21650 | 0.0 | - |
0.8391 | 21700 | 0.0 | - |
0.8410 | 21750 | 0.0 | - |
0.8430 | 21800 | 0.0 | - |
0.8449 | 21850 | 0.0 | - |
0.8468 | 21900 | 0.0 | - |
0.8488 | 21950 | 0.0006 | - |
0.8507 | 22000 | 0.0 | - |
0.8526 | 22050 | 0.0 | - |
0.8546 | 22100 | 0.0002 | - |
0.8565 | 22150 | 0.0 | - |
0.8584 | 22200 | 0.0011 | - |
0.8604 | 22250 | 0.0 | - |
0.8623 | 22300 | 0.0 | - |
0.8642 | 22350 | 0.0 | - |
0.8662 | 22400 | 0.0 | - |
0.8681 | 22450 | 0.0 | - |
0.8700 | 22500 | 0.0 | - |
0.8720 | 22550 | 0.0 | - |
0.8739 | 22600 | 0.0 | - |
0.8758 | 22650 | 0.0 | - |
0.8778 | 22700 | 0.0 | - |
0.8797 | 22750 | 0.0 | - |
0.8816 | 22800 | 0.0 | - |
0.8836 | 22850 | 0.0 | - |
0.8855 | 22900 | 0.0 | - |
0.8874 | 22950 | 0.0 | - |
0.8894 | 23000 | 0.0 | - |
0.8913 | 23050 | 0.0 | - |
0.8932 | 23100 | 0.0 | - |
0.8952 | 23150 | 0.0 | - |
0.8971 | 23200 | 0.0 | - |
0.8990 | 23250 | 0.0 | - |
0.9010 | 23300 | 0.0 | - |
0.9029 | 23350 | 0.0 | - |
0.9048 | 23400 | 0.0 | - |
0.9068 | 23450 | 0.0 | - |
0.9087 | 23500 | 0.0 | - |
0.9106 | 23550 | 0.0 | - |
0.9126 | 23600 | 0.0 | - |
0.9145 | 23650 | 0.0 | - |
0.9164 | 23700 | 0.0 | - |
0.9184 | 23750 | 0.0 | - |
0.9203 | 23800 | 0.0 | - |
0.9222 | 23850 | 0.0 | - |
0.9242 | 23900 | 0.0 | - |
0.9261 | 23950 | 0.0 | - |
0.9280 | 24000 | 0.0 | - |
0.9300 | 24050 | 0.0 | - |
0.9319 | 24100 | 0.0 | - |
0.9338 | 24150 | 0.0 | - |
0.9358 | 24200 | 0.0 | - |
0.9377 | 24250 | 0.0 | - |
0.9396 | 24300 | 0.0 | - |
0.9416 | 24350 | 0.0 | - |
0.9435 | 24400 | 0.0 | - |
0.9454 | 24450 | 0.0 | - |
0.9474 | 24500 | 0.0 | - |
0.9493 | 24550 | 0.0 | - |
0.9512 | 24600 | 0.0 | - |
0.9532 | 24650 | 0.0 | - |
0.9551 | 24700 | 0.0 | - |
0.9570 | 24750 | 0.0 | - |
0.9590 | 24800 | 0.0 | - |
0.9609 | 24850 | 0.0 | - |
0.9628 | 24900 | 0.0 | - |
0.9648 | 24950 | 0.0 | - |
0.9667 | 25000 | 0.0 | - |
0.9686 | 25050 | 0.0 | - |
0.9706 | 25100 | 0.0 | - |
0.9725 | 25150 | 0.0 | - |
0.9744 | 25200 | 0.0 | - |
0.9764 | 25250 | 0.0 | - |
0.9783 | 25300 | 0.0 | - |
0.9802 | 25350 | 0.0 | - |
0.9822 | 25400 | 0.0 | - |
0.9841 | 25450 | 0.0 | - |
0.9860 | 25500 | 0.0 | - |
0.9880 | 25550 | 0.0 | - |
0.9899 | 25600 | 0.0 | - |
0.9918 | 25650 | 0.0 | - |
0.9938 | 25700 | 0.0 | - |
0.9957 | 25750 | 0.0 | - |
0.9976 | 25800 | 0.0 | - |
0.9996 | 25850 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.42.2
- PyTorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for cbpuschmann/all-mpnet-base-klimacoder_v0.7
Base model
sentence-transformers/all-mpnet-base-v2