File size: 2,175 Bytes
cb883cd 105a751 cb883cd b18a8e3 cb883cd 5a4281e cb883cd b18a8e3 cb883cd 40342c6 cb883cd 40342c6 cb883cd d948db0 cb883cd 40342c6 cb883cd 40342c6 cb883cd 40342c6 cb883cd f6f3874 40342c6 cb883cd 40342c6 f6f3874 cb883cd 40342c6 cb883cd 40342c6 cb883cd 40342c6 cb883cd 40342c6 b18a8e3 40342c6 cb883cd 40342c6 cb883cd 40342c6 cb883cd 40342c6 cb883cd 40342c6 cb883cd 40342c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
datasets:
- oscar-corpus/OSCAR-2109
language:
- en
- es
pipeline_tag: text-generation
library_name: transformers
---
# B-GPT_en_es_simultaneous
This is a bilingual GPT-2 style model. For the first half of training, this model was trained only on English data. In the second half of training, the model was trained on a 50%-50% mix of English and Spanish data. At the end of training, 75% of training data seen by the model is English and 25% is Spanish. The tokenizer was trained on the same overall proportions of data as the language model at the final step.
## Model details:
All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
For best results, make sure that [CLS] is prepended to your input sequence (see sample usage linked above)!
Details for this model specifically:
* Architecture: gpt2
* Parameters: 124770816
* Maximum sequence length: 512 tokens
* Training tokens: 12B
* Vocabulary size: 50000
* Compute cost: ~9 NVIDIA A6000 GPU hours
* CO2 Emission: 1.17 kg
Training dataset: [OSCAR 2021/09](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109)
Checkpoints are taken at training steps: 0, 10000, 20000, 30000, 40000, 50000, 64000, 64010, 64020, 64030, 64040, 64050, 64060, 64070, 64080, 64090, 64100, 64110, 64120, 64130, 64140, 64150, 64160, 64170, 64180, 64190, 64200, 64300, 64400, 64500, 64600, 64700, 64800, 64900, 65000, 66000, 67000, 68000, 69000, 70000, 80000, 90000, 100000, 110000, 120000, 128000.
## Use This Model
Load the model:
Note: if you do not specify a revision, it will load the final checkpoint of the model. See above for the list of checkpoints. The checkpoint step is the name of the revision.
```
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("B-GPT_en_es_simultaneous")
model = AutoModel.from_pretrained("B-GPT_en_es_simultaneous", revision = "128000")
````
Text Generation:
```
from transformers import pipeline
pipe = pipeline("text-generation", model="B-GPT_en_es_simultaneous")
pipe("I am a")
```
## Citation
If you use this model, please cite:
```
```
|