catherinearnett commited on
Commit
b18a8e3
·
verified ·
1 Parent(s): 9399f3c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +46 -176
README.md CHANGED
@@ -1,199 +1,69 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
 
6
- # Model Card for Model ID
 
 
 
 
 
 
 
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
 
 
13
 
14
- ### Model Description
 
 
 
 
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
 
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
1
 
2
+ ---
3
+ license: apache-2.0
4
+ datasets:
5
+ - oscar-corpus/OSCAR-2109
6
+ language:
7
+ - en
8
+ - es
9
+ pipeline_tag: text-generation
10
+ library_name: transformers
11
+ ---
12
 
13
+ # B-GPT_en_es_simultaneous
14
 
15
+ The B-GPT Models are bilingual GPT-2 style models. For the first half of training, this model was trained only on English data. In the second half of training, the model was trained on a 50%-50% mix of {language_1} and {language_2} data.. At the end of training, 75 % of training data seen by the model is English and 25 % is Spanish. The tokenizer was trained on the same proportions of English and Spanish data.
16
 
17
+ ## Model details:
18
 
19
+ All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
20
+ For best results, make sure that [CLS] is prepended to your input sequence (see sample usage linked above)!
21
+ Details for this model specifically:
22
 
23
+ * Architecture: gpt2
24
+ * Parameters: 124770816
25
+ * Maximum sequence length: 512 tokens
26
+ * Training text data (raw): [XXXX]
27
+ * Training tokens: 12B
28
+ * Vocabulary size: 50000
29
+ * Compute cost: ~9 NVIDIA A6000 GPU hours
30
+ * CO2 Emission: 1.17 kg
31
 
32
+ Training datasets (percentages prior to deduplication):
33
+ * 100.00000%: [OSCAR 2021/09](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109)
34
 
35
+ Checkpoints are taken at training steps: 0, 10000, 20000, 30000, 40000, 50000, 64000, 64010, 64020, 64030, 64040, 64050, 64060, 64070, 64080, 64090, 64100, 64110, 64120, 64130, 64140, 64150, 64160, 64170, 64180, 64190, 64200, 64300, 64400, 64500, 64600, 64700, 64800, 64900, 65000, 66000, 67000, 68000, 69000, 70000, 80000, 90000, 100000, 110000, 120000, 128000.
36
 
37
+ ## Use This Model
 
 
 
 
 
 
38
 
39
+ Load the model:
40
 
41
+ ```
42
+ from transformers import AutoTokenizer, AutoModel
43
 
44
+ tokenizer = AutoTokenizer.from_pretrained("B-GPT_en_es_simultaneous")
45
+ model = AutoModel.from_pretrained("B-GPT_en_es_simultaneous")
 
46
 
 
47
 
48
+ ````
49
 
50
+ Text Generation:
51
 
52
+ ```
53
+ from transformers import pipeline
54
 
55
+ pipe = pipeline("text-generation", model="B-GPT_en_es_simultaneous")
56
+
57
+ pipe("I am a")
58
 
59
+ ```
60
 
61
+ ## Citation
62
 
63
+ If you use this model, please cite:
64
 
65
+ ```
66
 
 
67
 
68
+ ```
69
+