lsg-ner-phrases-16384

This model is a fine-tuned version of lsg-base-16384-juri on the cassandra-themis/ner-phrases dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0058
  • New Sentence Precision: 0.9955
  • New Sentence Recall: 0.9932
  • New Sentence F1: 0.9943
  • New Sentence Number: 442
  • Overall Precision: 0.9955
  • Overall Recall: 0.9932
  • Overall F1: 0.9943
  • Overall Accuracy: 0.9996

Usage

from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
import re

model_path = "cassandra-themis/lsg-ner-phrases-16384"

model = AutoModelForTokenClassification.from_pretrained(model_path, trust_remote_code=True, use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, use_auth_token=True)
ner_pipe = pipeline("token-classification", model=model, tokenizer=tokenizer)


document = "My document"
document_flattened = re.sub(r'(\s|\t|\n)+', r' ', document).strip()

prediction = ner_pipe(document_flattened, aggregation_strategy="simple")

sentences = []
for i in range(len(prediction) - 1):
    sentences.append(document_flattened[prediction[i]["start"]:prediction[i+1]["start"]].strip())
print("\n".join(sentences))

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 2
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 150.0

Training results

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.0
  • Tokenizers 0.11.6
Downloads last month
12
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.