|
--- |
|
base_model: facebook/mbart-large-50 |
|
library_name: peft |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: mbart-large-50_Nepali_News_Summarization_QLoRA_8bit |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mbart-large-50_Nepali_News_Summarization_QLoRA_8bit |
|
|
|
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3724 |
|
- Rouge-1 R: 0.3809 |
|
- Rouge-1 P: 0.3877 |
|
- Rouge-1 F: 0.3745 |
|
- Rouge-2 R: 0.2144 |
|
- Rouge-2 P: 0.2176 |
|
- Rouge-2 F: 0.2093 |
|
- Rouge-l R: 0.3702 |
|
- Rouge-l P: 0.3766 |
|
- Rouge-l F: 0.364 |
|
- Gen Len: 14.0747 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge-1 R | Rouge-1 P | Rouge-1 F | Rouge-2 R | Rouge-2 P | Rouge-2 F | Rouge-l R | Rouge-l P | Rouge-l F | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-------:| |
|
| 1.5604 | 1.0 | 10191 | 1.5916 | 0.3605 | 0.3694 | 0.3536 | 0.1948 | 0.2008 | 0.19 | 0.3501 | 0.3586 | 0.3433 | 14.7262 | |
|
| 1.5482 | 2.0 | 20382 | 1.3992 | 0.3673 | 0.3879 | 0.3672 | 0.2034 | 0.2149 | 0.202 | 0.3577 | 0.3775 | 0.3575 | 13.7928 | |
|
| 1.2397 | 3.0 | 30573 | 1.3724 | 0.3809 | 0.3877 | 0.3745 | 0.2144 | 0.2176 | 0.2093 | 0.3702 | 0.3766 | 0.364 | 14.0747 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.42.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |