cartesinus's picture
Librarian Bot: Add base_model information to model (#2)
10060ff
metadata
language:
  - de
  - fr
  - it
  - pt
  - es
  - pl
license: mit
tags:
  - generated_from_trainer
  - nlu
  - text-classification
  - intent-classification
datasets:
  - AmazonScience/massive
metrics:
  - accuracy
  - f1
base_model: microsoft/Multilingual-MiniLM-L12-H384
model-index:
  - name: multilingual_minilm-amazon_massive-intent_eu_noen
    results:
      - task:
          type: intent-classification
          name: intent-classification
        dataset:
          name: MASSIVE
          type: AmazonScience/massive
          split: test
        metrics:
          - type: f1
            value: 0.8551
            name: F1

multilingual_minilm-amazon_massive-intent_eu_noen

This model is a fine-tuned version of microsoft/Multilingual-MiniLM-L12-H384 on the MASSIVE1.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7794
  • Accuracy: 0.8551
  • F1: 0.8551

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.7624 1.0 4318 1.5462 0.6331 0.6331
0.9535 2.0 8636 0.9628 0.7698 0.7698
0.6849 3.0 12954 0.8034 0.8097 0.8097
0.5163 4.0 17272 0.7444 0.8290 0.8290
0.3973 5.0 21590 0.7346 0.8383 0.8383
0.331 6.0 25908 0.7369 0.8453 0.8453
0.2876 7.0 30226 0.7325 0.8510 0.8510
0.2319 8.0 34544 0.7726 0.8496 0.8496
0.2098 9.0 38862 0.7803 0.8543 0.8543
0.1863 10.0 43180 0.7794 0.8551 0.8551

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2