|
--- |
|
language: multilingual |
|
widget: |
|
- text: "๐ค" |
|
- text: "T'estimo! โค๏ธ" |
|
- text: "I love you!" |
|
- text: "I hate you ๐คฎ" |
|
- text: "Mahal kita!" |
|
- text: "์ฌ๋ํด!" |
|
- text: "๋ ๋๊ฐ ์ซ์ด" |
|
- text: "๐๐๐" |
|
--- |
|
|
|
|
|
# twitter-XLM-roBERTa-base for Sentiment Analysis |
|
|
|
This is a multilingual XLM-roBERTa-base model trained on ~198M tweets and finetuned for sentiment analysis. The sentiment fine-tuning was done on 8 languages (Ar, En, Fr, De, Hi, It, Sp, Pt) but it can be used for more languages (see paper for details). |
|
|
|
- Paper: [XLM-T: A Multilingual Language Model Toolkit for Twitter](https://arxiv.org/abs/2104.12250). |
|
- Git Repo: [XLM-T official repository](https://github.com/cardiffnlp/xlm-t). |
|
|
|
This model has been integrated into the [TweetNLP library](https://github.com/cardiffnlp/tweetnlp). |
|
|
|
## Example Pipeline |
|
```python |
|
from transformers import pipeline |
|
model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment" |
|
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) |
|
sentiment_task("T'estimo!") |
|
``` |
|
``` |
|
[{'label': 'Positive', 'score': 0.6600581407546997}] |
|
``` |
|
|
|
## Full classification example |
|
|
|
```python |
|
from transformers import AutoModelForSequenceClassification |
|
from transformers import TFAutoModelForSequenceClassification |
|
from transformers import AutoTokenizer, AutoConfig |
|
import numpy as np |
|
from scipy.special import softmax |
|
|
|
# Preprocess text (username and link placeholders) |
|
def preprocess(text): |
|
new_text = [] |
|
for t in text.split(" "): |
|
t = '@user' if t.startswith('@') and len(t) > 1 else t |
|
t = 'http' if t.startswith('http') else t |
|
new_text.append(t) |
|
return " ".join(new_text) |
|
|
|
MODEL = f"cardiffnlp/twitter-xlm-roberta-base-sentiment" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL) |
|
config = AutoConfig.from_pretrained(MODEL) |
|
|
|
# PT |
|
model = AutoModelForSequenceClassification.from_pretrained(MODEL) |
|
model.save_pretrained(MODEL) |
|
|
|
text = "Good night ๐" |
|
text = preprocess(text) |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
scores = output[0][0].detach().numpy() |
|
scores = softmax(scores) |
|
|
|
# # TF |
|
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) |
|
# model.save_pretrained(MODEL) |
|
|
|
# text = "Good night ๐" |
|
# encoded_input = tokenizer(text, return_tensors='tf') |
|
# output = model(encoded_input) |
|
# scores = output[0][0].numpy() |
|
# scores = softmax(scores) |
|
|
|
# Print labels and scores |
|
ranking = np.argsort(scores) |
|
ranking = ranking[::-1] |
|
for i in range(scores.shape[0]): |
|
l = config.id2label[ranking[i]] |
|
s = scores[ranking[i]] |
|
print(f"{i+1}) {l} {np.round(float(s), 4)}") |
|
|
|
``` |
|
|
|
Output: |
|
|
|
``` |
|
1) Positive 0.7673 |
|
2) Neutral 0.2015 |
|
3) Negative 0.0313 |
|
``` |
|
|
|
|