|
# twitter-XLM-roBERTa-base for Sentiment Analysis |
|
|
|
This is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for sentiment analysis in |
|
|
|
- Paper: [XLM-T: A Multilingual Language Model Toolkit for Twitter](https://...). |
|
- Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/xlm-t). |
|
|
|
## Example of classification |
|
|
|
```python |
|
from transformers import AutoModelForSequenceClassification |
|
from transformers import TFAutoModelForSequenceClassification |
|
from transformers import AutoTokenizer |
|
import numpy as np |
|
from scipy.special import softmax |
|
import csv |
|
import urllib.request |
|
|
|
# Preprocess text (username and link placeholders) |
|
def preprocess(text): |
|
new_text = [] |
|
|
|
|
|
for t in text.split(" "): |
|
t = '@user' if t.startswith('@') and len(t) > 1 else t |
|
t = 'http' if t.startswith('http') else t |
|
new_text.append(t) |
|
return " ".join(new_text) |
|
|
|
|
|
MODEL = f"cardiffnlp/twitter-xlm-roberta-base-sentiment" |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL) |
|
|
|
# download label mapping |
|
labels=[] |
|
mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/sentiment/mapping.txt" |
|
with urllib.request.urlopen(mapping_link) as f: |
|
html = f.read().decode('utf-8').split("\\ |
|
") |
|
csvreader = csv.reader(html, delimiter='\\\\t') |
|
labels = [row[1] for row in csvreader if len(row) > 1] |
|
|
|
# PT |
|
model = AutoModelForSequenceClassification.from_pretrained(MODEL) |
|
model.save_pretrained(MODEL) |
|
|
|
text = "Good night ๐" |
|
text = preprocess(text) |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
scores = output[0][0].detach().numpy() |
|
scores = softmax(scores) |
|
|
|
# # TF |
|
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) |
|
# model.save_pretrained(MODEL) |
|
|
|
# text = "Good night ๐" |
|
# encoded_input = tokenizer(text, return_tensors='tf') |
|
# output = model(encoded_input) |
|
# scores = output[0][0].numpy() |
|
# scores = softmax(scores) |
|
|
|
ranking = np.argsort(scores) |
|
ranking = ranking[::-1] |
|
for i in range(scores.shape[0]): |
|
l = labels[ranking[i]] |
|
s = scores[ranking[i]] |
|
print(f"{i+1}) {l} {np.round(float(s), 4)}") |
|
|
|
``` |
|
|
|
Output: |
|
|
|
``` |
|
1) positive 0.76726073 |
|
2) neutral 0.201 |
|
3) negative 0.0312 |
|
``` |
|
|
|
|