he-cantillation

This model is a fine-tuned version of openai/whisper-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4208
  • Wer: 18.5421
  • Avg Precision Exact: 0.8482
  • Avg Recall Exact: 0.8623
  • Avg F1 Exact: 0.8545
  • Avg Precision Letter Shift: 0.8778
  • Avg Recall Letter Shift: 0.8926
  • Avg F1 Letter Shift: 0.8844
  • Avg Precision Word Level: 0.8803
  • Avg Recall Word Level: 0.8946
  • Avg F1 Word Level: 0.8866
  • Avg Precision Word Shift: 0.9416
  • Avg Recall Word Shift: 0.9549
  • Avg F1 Word Shift: 0.9475
  • Precision Median Exact: 0.9167
  • Recall Median Exact: 0.9167
  • F1 Median Exact: 0.9167
  • Precision Max Exact: 1.0
  • Recall Max Exact: 1.0
  • F1 Max Exact: 1.0
  • Precision Min Exact: 0.0
  • Recall Min Exact: 0.0
  • F1 Min Exact: 0.0
  • Precision Min Letter Shift: 0.0
  • Recall Min Letter Shift: 0.0
  • F1 Min Letter Shift: 0.0
  • Precision Min Word Level: 0.0
  • Recall Min Word Level: 0.0
  • F1 Min Word Level: 0.0
  • Precision Min Word Shift: 0.6154
  • Recall Min Word Shift: 0.6667
  • F1 Min Word Shift: 0.64

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 200000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Avg Precision Exact Avg Recall Exact Avg F1 Exact Avg Precision Letter Shift Avg Recall Letter Shift Avg F1 Letter Shift Avg Precision Word Level Avg Recall Word Level Avg F1 Word Level Avg Precision Word Shift Avg Recall Word Shift Avg F1 Word Shift Precision Median Exact Recall Median Exact F1 Median Exact Precision Max Exact Recall Max Exact F1 Max Exact Precision Min Exact Recall Min Exact F1 Min Exact Precision Min Letter Shift Recall Min Letter Shift F1 Min Letter Shift Precision Min Word Level Recall Min Word Level F1 Min Word Level Precision Min Word Shift Recall Min Word Shift F1 Min Word Shift
No log 8e-05 1 7.8969 120.8943 0.0002 0.0000 0.0000 0.0030 0.0028 0.0027 0.0024 0.0137 0.0027 0.0141 0.0233 0.0133 0.0 0.0 0.0 0.0625 0.0074 0.0132 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0777 0.8 10000 0.2194 22.7167 0.7902 0.7985 0.7935 0.8205 0.8298 0.8243 0.8264 0.8358 0.8303 0.9175 0.9318 0.9237 0.9091 0.9091 0.8889 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0363 1.6 20000 0.2639 19.9619 0.8266 0.8330 0.8289 0.8554 0.8623 0.8580 0.8620 0.8676 0.8640 0.9419 0.9519 0.9459 0.9091 0.9167 0.9091 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6154 0.6429 0.64
0.0189 2.4 30000 0.2936 20.0678 0.8200 0.8284 0.8233 0.8485 0.8574 0.8521 0.8538 0.8621 0.8571 0.9365 0.9491 0.9419 0.9167 0.9167 0.9167 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4167 0.4545 0.4348
0.0089 3.2 40000 0.3115 19.8347 0.8154 0.8264 0.8200 0.8456 0.8570 0.8504 0.8488 0.8601 0.8536 0.9396 0.9526 0.9452 0.9167 0.9167 0.9167 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5556 0.5263
0.0095 4.0 50000 0.3330 20.0042 0.8325 0.8425 0.8366 0.8628 0.8739 0.8674 0.8668 0.8780 0.8715 0.9376 0.9481 0.9418 0.9091 0.9167 0.9091 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5385 0.5833 0.5600
0.0062 4.8 60000 0.3605 19.6228 0.8291 0.8399 0.8336 0.8619 0.8733 0.8667 0.8651 0.8752 0.8693 0.9376 0.9466 0.9413 0.9091 0.9167 0.9167 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1111 0.0833 0.0952
0.0052 5.6 70000 0.3855 20.4492 0.8137 0.8244 0.8182 0.8398 0.8513 0.8448 0.8446 0.8568 0.8499 0.9330 0.9448 0.9380 0.9091 0.9091 0.9 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4545 0.5556 0.5
0.0018 6.4 80000 0.3755 20.1950 0.8275 0.8378 0.8318 0.8579 0.8695 0.8628 0.8617 0.8732 0.8666 0.9402 0.9511 0.9447 0.9167 0.9167 0.9167 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6667 0.6 0.6316
0.0038 7.2 90000 0.3829 20.4281 0.8308 0.8429 0.8359 0.8586 0.8715 0.8640 0.8619 0.8738 0.8669 0.9328 0.9467 0.9387 0.9167 0.9167 0.9167 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0833 0.0769 0.08
0.0029 8.0 100000 0.3823 19.4533 0.8423 0.8504 0.8455 0.8686 0.8773 0.8720 0.8716 0.8795 0.8747 0.9435 0.9498 0.9457 0.9167 0.9167 0.9167 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6154 0.6667 0.64
0.0013 8.8 110000 0.3992 19.7499 0.8323 0.8449 0.8378 0.8609 0.8745 0.8668 0.8639 0.8767 0.8694 0.9404 0.9532 0.9459 0.9167 0.9167 0.9167 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6154 0.625 0.625
0.0015 9.6 120000 0.3963 19.8135 0.8317 0.8426 0.8364 0.8629 0.8745 0.8679 0.8660 0.8775 0.8710 0.9355 0.9460 0.9399 0.9167 0.9167 0.9167 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0005 10.4 130000 0.4010 19.3261 0.8398 0.8500 0.8441 0.8705 0.8816 0.8751 0.8737 0.8845 0.8782 0.9379 0.9497 0.9430 0.9167 0.9167 0.9167 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2727 0.2727 0.2727
0.0003 11.2 140000 0.4015 19.3685 0.8386 0.8518 0.8444 0.8676 0.8817 0.8738 0.8714 0.8844 0.8771 0.9319 0.9461 0.9381 0.9091 0.9167 0.9091 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2727 0.2727 0.2727
0.0007 12.0 150000 0.4071 19.2837 0.8341 0.8455 0.8389 0.8642 0.8765 0.8695 0.8684 0.8802 0.8735 0.9380 0.9493 0.9428 0.9167 0.9167 0.9167 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5833 0.5385 0.5600
0.0008 12.8 160000 0.4111 19.3685 0.8391 0.8491 0.8433 0.8683 0.8791 0.8729 0.8722 0.8824 0.8765 0.9373 0.9494 0.9425 0.9167 0.9167 0.9167 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5833 0.5833 0.5833
0.0002 13.6 170000 0.4107 19.4745 0.8295 0.8400 0.8339 0.8607 0.8721 0.8655 0.8645 0.8751 0.8689 0.9379 0.9493 0.9427 0.9091 0.9167 0.9091 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5833 0.5833 0.5833
0.0001 14.4 180000 0.4214 18.7752 0.8473 0.8609 0.8533 0.8780 0.8925 0.8844 0.8810 0.8940 0.8867 0.9407 0.9539 0.9464 0.9167 0.9167 0.9167 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6364 0.7273 0.6957
0.0001 15.2 190000 0.4146 18.7116 0.8474 0.8609 0.8533 0.8768 0.8910 0.8831 0.8804 0.8944 0.8866 0.9413 0.9550 0.9473 0.9167 0.9167 0.9167 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6667 0.7273 0.6957
0.0005 16.0 200000 0.4208 18.5421 0.8482 0.8623 0.8545 0.8778 0.8926 0.8844 0.8803 0.8946 0.8866 0.9416 0.9549 0.9475 0.9167 0.9167 0.9167 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6154 0.6667 0.64

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.2.1
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cantillation/Teamim-small_Random_WeightDecay-0.05_Augmented_Old-Data_date-21-07-2024_14-33

Finetuned
(2220)
this model