test / README.md
camillebri's picture
Uploading None in /Users/camille.brianceau/aramis/DATA/maps
44b71ca
|
raw
history blame
2.12 kB
metadata
language: en
library_name: clinicadl
tags:
  - clinicadl
license: mit

Model Card for None

This model was trained with ClinicaDL. You can find here the

General information

Architecture

This model was trained for classification and the architecture chosen is Conv4_FC3.
dropout: 0.0
latent_space_size: 2
feature_size: 1024
n_conv: 4
io_layer_channels: 8
recons_weight: 1
kl_weight: 1
normalization: batch
architecture: Conv4_FC3
multi_network: False
dropout: 0.0
latent_space_dimension: 64
latent_space_size: 2
selection_metrics: ['loss']
label: diagnosis
selection_threshold: 0.0
gpu: True
n_proc: 32
batch_size: 32
evaluation_steps: 20
seed: 0
deterministic: False
compensation: memory
transfer_path: ../../autoencoders/exp3/maps
transfer_selection_metric: loss
use_extracted_features: False
multi_cohort: False
diagnoses: ['AD', 'CN']
baseline: True
normalize: True
data_augmentation: False
sampler: random
n_splits: 5
epochs: 200
learning_rate: 1e-05
weight_decay: 0.0001
patience: 10
tolerance: 0.0
accumulation_steps: 1
optimizer: Adam
preprocessing_dict: {'preprocessing': 't1-linear', 'mode': 'roi', 'use_uncropped_image': False, 'roi_list': ['leftHippocampusBox', 'rightHippocampusBox'], 'uncropped_roi': False, 'prepare_dl': False, 'file_type': {'pattern': '*space-MNI152NLin2009cSym_desc-Crop_res-1x1x1_T1w.nii.gz', 'description': 'T1W Image registered using t1-linear and cropped (matrix size 169×208×179, 1 mm isotropic voxels)', 'needed_pipeline': 't1-linear'}}
mode: roi
network_task: classification
caps_directory: $WORK/../commun/datasets/adni/caps/caps_v2021
tsv_path: $WORK/Aramis_tools/ClinicaDL_tools/experiments_ADDL/data/ADNI/train
validation: KFoldSplit
num_networks: 2
label_code: {'AD': 0, 'CN': 1}
output_size: 2
input_size: [1, 50, 50, 50]
loss: None