|
|
|
--- |
|
language: en |
|
library_name: clinicadl |
|
tags: |
|
- clinicadl |
|
license: mit |
|
--- |
|
# Model Card for maps_bis |
|
This model was trained with ClinicaDL. You can find here all the information. |
|
## General information |
|
This model was trained for **classification** and the architecture chosen is **Conv4_FC3**. |
|
### Model |
|
**architecture**: Conv4_FC3 |
|
**multi_network**: False |
|
**ssda_network**: False |
|
### Architecture |
|
**dropout**: 0.0 |
|
**latent_space_size**: 2 |
|
**feature_size**: 1024 |
|
**n_conv**: 4 |
|
**io_layer_channels**: 8 |
|
**recons_weight**: 1 |
|
**kl_weight**: 1 |
|
**normalization**: batch |
|
### Classification |
|
**selection_metrics**: ['loss'] |
|
**label**: diagnosis |
|
**label_code**: {'AD': 0, 'CN': 1} |
|
**selection_threshold**: 0.0 |
|
**loss**: None |
|
### Computational |
|
**gpu**: True |
|
**n_proc**: 32 |
|
**batch_size**: 32 |
|
**evaluation_steps**: 20 |
|
**fully_sharded_data_parallel**: False |
|
**amp**: False |
|
### Reproducibility |
|
**seed**: 0 |
|
**deterministic**: False |
|
**compensation**: memory |
|
**track_exp**: |
|
### Transfer_learning |
|
**transfer_path**: ../../autoencoders/exp3/maps |
|
**transfer_selection_metric**: loss |
|
**nb_unfrozen_layer**: 0 |
|
### Mode |
|
**use_extracted_features**: False |
|
### Data |
|
**multi_cohort**: False |
|
**diagnoses**: ['AD', 'CN'] |
|
**baseline**: True |
|
**normalize**: True |
|
**data_augmentation**: False |
|
**sampler**: random |
|
**size_reduction**: False |
|
**size_reduction_factor**: 2 |
|
**caps_target**: |
|
**tsv_target_lab**: |
|
**tsv_target_unlab**: |
|
**preprocessing_dict_target**: |
|
### Cross_validation |
|
**n_splits**: 5 |
|
**split**: [] |
|
### Optimization |
|
**optimizer**: Adam |
|
**epochs**: 200 |
|
**learning_rate**: 1e-05 |
|
**adaptive_learning_rate**: False |
|
**weight_decay**: 0.0001 |
|
**patience**: 10 |
|
**tolerance**: 0.0 |
|
**accumulation_steps**: 1 |
|
**profiler**: False |
|
**save_all_models**: False |
|
### Informations |
|
**emissions_calculator**: False |
|
### Other information |
|
**latent_space_dimension**: 64 |
|
**preprocessing_dict**: {'preprocessing': 't1-linear', 'mode': 'roi', 'use_uncropped_image': False, 'roi_list': ['leftHippocampusBox', 'rightHippocampusBox'], 'uncropped_roi': False, 'prepare_dl': False, 'file_type': {'pattern': '*space-MNI152NLin2009cSym_desc-Crop_res-1x1x1_T1w.nii.gz', 'description': 'T1W Image registered using t1-linear and cropped (matrix size 169×208×179, 1 mm isotropic voxels)', 'needed_pipeline': 't1-linear'}} |
|
**mode**: roi |
|
**network_task**: classification |
|
**caps_directory**: $WORK/../commun/datasets/adni/caps/caps_v2021 |
|
**tsv_path**: $WORK/Aramis_tools/ClinicaDL_tools/experiments_ADDL/data/ADNI/train |
|
**validation**: KFoldSplit |
|
**num_networks**: 2 |
|
**output_size**: 2 |
|
**input_size**: [1, 50, 50, 50] |
|
|