|
--- |
|
title: Convolution Layer |
|
--- |
|
|
|
# Convolution Layer |
|
|
|
* Layer type: `Convolution` |
|
* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ConvolutionLayer.html) |
|
* Header: [`./include/caffe/layers/conv_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/conv_layer.hpp) |
|
* CPU implementation: [`./src/caffe/layers/conv_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cpp) |
|
* CUDA GPU implementation: [`./src/caffe/layers/conv_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cu) |
|
* Input |
|
- `n * c_i * h_i * w_i` |
|
* Output |
|
- `n * c_o * h_o * w_o`, where `h_o = (h_i + 2 * pad_h - kernel_h) / stride_h + 1` and `w_o` likewise. |
|
|
|
The `Convolution` layer convolves the input image with a set of learnable filters, each producing one feature map in the output image. |
|
|
|
## Sample |
|
|
|
Sample (as seen in [`./models/bvlc_reference_caffenet/train_val.prototxt`](https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt)): |
|
|
|
layer { |
|
name: "conv1" |
|
type: "Convolution" |
|
bottom: "data" |
|
top: "conv1" |
|
# learning rate and decay multipliers for the filters |
|
param { lr_mult: 1 decay_mult: 1 } |
|
# learning rate and decay multipliers for the biases |
|
param { lr_mult: 2 decay_mult: 0 } |
|
convolution_param { |
|
num_output: 96 # learn 96 filters |
|
kernel_size: 11 # each filter is 11x11 |
|
stride: 4 # step 4 pixels between each filter application |
|
weight_filler { |
|
type: "gaussian" # initialize the filters from a Gaussian |
|
std: 0.01 # distribution with stdev 0.01 (default mean: 0) |
|
} |
|
bias_filler { |
|
type: "constant" # initialize the biases to zero (0) |
|
value: 0 |
|
} |
|
} |
|
} |
|
|
|
## Parameters |
|
* Parameters (`ConvolutionParameter convolution_param`) |
|
- Required |
|
- `num_output` (`c_o`): the number of filters |
|
- `kernel_size` (or `kernel_h` and `kernel_w`): specifies height and width of each filter |
|
- Strongly Recommended |
|
- `weight_filler` [default `type: 'constant' value: 0`] |
|
- Optional |
|
- `bias_term` [default `true`]: specifies whether to learn and apply a set of additive biases to the filter outputs |
|
- `pad` (or `pad_h` and `pad_w`) [default 0]: specifies the number of pixels to (implicitly) add to each side of the input |
|
- `stride` (or `stride_h` and `stride_w`) [default 1]: specifies the intervals at which to apply the filters to the input |
|
- `group` (g) [default 1]: If g > 1, we restrict the connectivity of each filter to a subset of the input. Specifically, the input and output channels are separated into g groups, and the $$i$$th output group channels will be only connected to the $$i$$th input group channels. |
|
* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): |
|
|
|
{% highlight Protobuf %} |
|
{% include proto/ConvolutionParameter.txt %} |
|
{% endhighlight %} |
|
|