--- title: Convolution Layer --- # Convolution Layer * Layer type: `Convolution` * [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ConvolutionLayer.html) * Header: [`./include/caffe/layers/conv_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/conv_layer.hpp) * CPU implementation: [`./src/caffe/layers/conv_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cpp) * CUDA GPU implementation: [`./src/caffe/layers/conv_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cu) * Input - `n * c_i * h_i * w_i` * Output - `n * c_o * h_o * w_o`, where `h_o = (h_i + 2 * pad_h - kernel_h) / stride_h + 1` and `w_o` likewise. The `Convolution` layer convolves the input image with a set of learnable filters, each producing one feature map in the output image. ## Sample Sample (as seen in [`./models/bvlc_reference_caffenet/train_val.prototxt`](https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt)): layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" # learning rate and decay multipliers for the filters param { lr_mult: 1 decay_mult: 1 } # learning rate and decay multipliers for the biases param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 96 # learn 96 filters kernel_size: 11 # each filter is 11x11 stride: 4 # step 4 pixels between each filter application weight_filler { type: "gaussian" # initialize the filters from a Gaussian std: 0.01 # distribution with stdev 0.01 (default mean: 0) } bias_filler { type: "constant" # initialize the biases to zero (0) value: 0 } } } ## Parameters * Parameters (`ConvolutionParameter convolution_param`) - Required - `num_output` (`c_o`): the number of filters - `kernel_size` (or `kernel_h` and `kernel_w`): specifies height and width of each filter - Strongly Recommended - `weight_filler` [default `type: 'constant' value: 0`] - Optional - `bias_term` [default `true`]: specifies whether to learn and apply a set of additive biases to the filter outputs - `pad` (or `pad_h` and `pad_w`) [default 0]: specifies the number of pixels to (implicitly) add to each side of the input - `stride` (or `stride_h` and `stride_w`) [default 1]: specifies the intervals at which to apply the filters to the input - `group` (g) [default 1]: If g > 1, we restrict the connectivity of each filter to a subset of the input. Specifically, the input and output channels are separated into g groups, and the $$i$$th output group channels will be only connected to the $$i$$th input group channels. * From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): {% highlight Protobuf %} {% include proto/ConvolutionParameter.txt %} {% endhighlight %}