|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import os |
|
import commentjson as json |
|
|
|
import numpy as np |
|
|
|
import shutil |
|
import time |
|
|
|
from common import * |
|
from scenes import * |
|
|
|
from tqdm import tqdm |
|
|
|
import pyngp as ngp |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Run instant neural graphics primitives with additional configuration & output options") |
|
|
|
parser.add_argument("--scene", "--training_data", default="", help="The scene to load. Can be the scene's name or a full path to the training data.") |
|
parser.add_argument("--mode", default="", const="nerf", nargs="?", choices=["nerf", "sdf", "image", "volume"], help="Mode can be 'nerf', 'sdf', 'image' or 'volume'. Inferred from the scene if unspecified.") |
|
parser.add_argument("--network", default="", help="Path to the network config. Uses the scene's default if unspecified.") |
|
|
|
parser.add_argument("--load_snapshot", default="", help="Load this snapshot before training. recommended extension: .msgpack") |
|
parser.add_argument("--save_snapshot", default="", help="Save this snapshot after training. recommended extension: .msgpack") |
|
|
|
parser.add_argument("--nerf_compatibility", action="store_true", help="Matches parameters with original NeRF. Can cause slowness and worse results on some scenes.") |
|
parser.add_argument("--test_transforms", default="", help="Path to a nerf style transforms json from which we will compute PSNR.") |
|
parser.add_argument("--near_distance", default=-1, type=float, help="Set the distance from the camera at which training rays start for nerf. <0 means use ngp default") |
|
parser.add_argument("--exposure", default=0.0, type=float, help="Controls the brightness of the image. Positive numbers increase brightness, negative numbers decrease it.") |
|
|
|
parser.add_argument("--screenshot_transforms", default="", help="Path to a nerf style transforms.json from which to save screenshots.") |
|
parser.add_argument("--screenshot_frames", nargs="*", help="Which frame(s) to take screenshots of.") |
|
parser.add_argument("--screenshot_dir", default="", help="Which directory to output screenshots to.") |
|
parser.add_argument("--screenshot_spp", type=int, default=16, help="Number of samples per pixel in screenshots.") |
|
|
|
parser.add_argument("--video_camera_path", default="", help="The camera path to render, e.g., base_cam.json.") |
|
parser.add_argument("--video_camera_smoothing", action="store_true", help="Applies additional smoothing to the camera trajectory with the caveat that the endpoint of the camera path may not be reached.") |
|
parser.add_argument("--video_loop_animation", action="store_true", help="Connect the last and first keyframes in a continuous loop.") |
|
parser.add_argument("--video_fps", type=int, default=60, help="Number of frames per second.") |
|
parser.add_argument("--video_n_seconds", type=int, default=1, help="Number of seconds the rendered video should be long.") |
|
parser.add_argument("--video_spp", type=int, default=8, help="Number of samples per pixel. A larger number means less noise, but slower rendering.") |
|
parser.add_argument("--video_output", type=str, default="video.mp4", help="Filename of the output video.") |
|
|
|
parser.add_argument("--save_mesh", default="", help="Output a marching-cubes based mesh from the NeRF or SDF model. Supports OBJ and PLY format.") |
|
parser.add_argument("--marching_cubes_res", default=256, type=int, help="Sets the resolution for the marching cubes grid.") |
|
|
|
parser.add_argument("--width", "--screenshot_w", type=int, default=0, help="Resolution width of GUI and screenshots.") |
|
parser.add_argument("--height", "--screenshot_h", type=int, default=0, help="Resolution height of GUI and screenshots.") |
|
|
|
parser.add_argument("--gui", action="store_true", help="Run the testbed GUI interactively.") |
|
parser.add_argument("--train", action="store_true", help="If the GUI is enabled, controls whether training starts immediately.") |
|
parser.add_argument("--n_steps", type=int, default=-1, help="Number of steps to train for before quitting.") |
|
parser.add_argument("--second_window", action="store_true", help="Open a second window containing a copy of the main output.") |
|
|
|
parser.add_argument("--sharpen", default=0, help="Set amount of sharpening applied to NeRF training images. Range 0.0 to 1.0.") |
|
|
|
|
|
return parser.parse_args() |
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
|
|
args.mode = args.mode or mode_from_scene(args.scene) or mode_from_scene(args.load_snapshot) |
|
if not args.mode: |
|
raise ValueError("Must specify either a valid '--mode' or '--scene' argument.") |
|
|
|
if args.mode == "sdf": |
|
mode = ngp.TestbedMode.Sdf |
|
configs_dir = os.path.join(ROOT_DIR, "configs", "sdf") |
|
scenes = scenes_sdf |
|
elif args.mode == "nerf": |
|
mode = ngp.TestbedMode.Nerf |
|
configs_dir = os.path.join(ROOT_DIR, "configs", "nerf") |
|
scenes = scenes_nerf |
|
elif args.mode == "image": |
|
mode = ngp.TestbedMode.Image |
|
configs_dir = os.path.join(ROOT_DIR, "configs", "image") |
|
scenes = scenes_image |
|
elif args.mode == "volume": |
|
mode = ngp.TestbedMode.Volume |
|
configs_dir = os.path.join(ROOT_DIR, "configs", "volume") |
|
scenes = scenes_volume |
|
else: |
|
raise ValueError("Must specify either a valid '--mode' or '--scene' argument.") |
|
|
|
base_network = os.path.join(configs_dir, "base.json") |
|
if args.scene in scenes: |
|
network = scenes[args.scene]["network"] if "network" in scenes[args.scene] else "base" |
|
base_network = os.path.join(configs_dir, network+".json") |
|
network = args.network if args.network else base_network |
|
if not os.path.isabs(network): |
|
network = os.path.join(configs_dir, network) |
|
|
|
testbed = ngp.Testbed(mode) |
|
testbed.nerf.sharpen = float(args.sharpen) |
|
testbed.exposure = args.exposure |
|
if mode == ngp.TestbedMode.Sdf: |
|
testbed.tonemap_curve = ngp.TonemapCurve.ACES |
|
|
|
if args.scene: |
|
scene = args.scene |
|
if not os.path.exists(args.scene) and args.scene in scenes: |
|
scene = os.path.join(scenes[args.scene]["data_dir"], scenes[args.scene]["dataset"]) |
|
testbed.load_training_data(scene) |
|
|
|
if args.gui: |
|
|
|
sw = args.width or 1920 |
|
sh = args.height or 1080 |
|
while sw*sh > 1920*1080*4: |
|
sw = int(sw / 2) |
|
sh = int(sh / 2) |
|
testbed.init_window(sw, sh, second_window = args.second_window or False) |
|
|
|
|
|
if args.load_snapshot: |
|
snapshot = args.load_snapshot |
|
if not os.path.exists(snapshot) and snapshot in scenes: |
|
snapshot = default_snapshot_filename(scenes[snapshot]) |
|
print("Loading snapshot ", snapshot) |
|
testbed.load_snapshot(snapshot) |
|
else: |
|
testbed.reload_network_from_file(network) |
|
|
|
ref_transforms = {} |
|
if args.screenshot_transforms: |
|
print("Screenshot transforms from ", args.screenshot_transforms) |
|
with open(args.screenshot_transforms) as f: |
|
ref_transforms = json.load(f) |
|
|
|
testbed.shall_train = args.train if args.gui else True |
|
|
|
|
|
testbed.nerf.render_with_lens_distortion = True |
|
|
|
network_stem = os.path.splitext(os.path.basename(network))[0] |
|
if args.mode == "sdf": |
|
setup_colored_sdf(testbed, args.scene) |
|
|
|
if args.near_distance >= 0.0: |
|
print("NeRF training ray near_distance ", args.near_distance) |
|
testbed.nerf.training.near_distance = args.near_distance |
|
|
|
if args.nerf_compatibility: |
|
print(f"NeRF compatibility mode enabled") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
testbed.color_space = ngp.ColorSpace.SRGB |
|
|
|
|
|
|
|
|
|
|
|
|
|
testbed.nerf.cone_angle_constant = 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
old_training_step = 0 |
|
n_steps = args.n_steps |
|
|
|
|
|
|
|
|
|
if n_steps < 0 and (not args.load_snapshot or args.gui): |
|
n_steps = 35000 |
|
|
|
tqdm_last_update = 0 |
|
if n_steps > 0: |
|
with tqdm(desc="Training", total=n_steps, unit="step") as t: |
|
while testbed.frame(): |
|
if testbed.want_repl(): |
|
repl(testbed) |
|
|
|
if testbed.training_step >= n_steps: |
|
if args.gui: |
|
testbed.shall_train = False |
|
else: |
|
break |
|
|
|
|
|
if testbed.training_step < old_training_step or old_training_step == 0: |
|
old_training_step = 0 |
|
t.reset() |
|
|
|
now = time.monotonic() |
|
if now - tqdm_last_update > 0.1: |
|
t.update(testbed.training_step - old_training_step) |
|
t.set_postfix(loss=testbed.loss) |
|
old_training_step = testbed.training_step |
|
tqdm_last_update = now |
|
|
|
if args.save_snapshot: |
|
print("Saving snapshot ", args.save_snapshot) |
|
testbed.save_snapshot(args.save_snapshot, False) |
|
|
|
if args.test_transforms: |
|
print("Evaluating test transforms from ", args.test_transforms) |
|
with open(args.test_transforms) as f: |
|
test_transforms = json.load(f) |
|
data_dir=os.path.dirname(args.test_transforms) |
|
totmse = 0 |
|
totpsnr = 0 |
|
totssim = 0 |
|
totcount = 0 |
|
minpsnr = 1000 |
|
maxpsnr = 0 |
|
|
|
|
|
testbed.background_color = [0.0, 0.0, 0.0, 1.0] |
|
|
|
|
|
|
|
testbed.snap_to_pixel_centers = True |
|
spp = 8 |
|
|
|
testbed.nerf.render_min_transmittance = 1e-4 |
|
|
|
testbed.fov_axis = 0 |
|
testbed.fov = test_transforms["camera_angle_x"] * 180 / np.pi |
|
testbed.shall_train = False |
|
|
|
with tqdm(list(enumerate(test_transforms["frames"])), unit="images", desc=f"Rendering test frame") as t: |
|
for i, frame in t: |
|
p = frame["file_path"] |
|
if "." not in p: |
|
p = p + ".png" |
|
ref_fname = os.path.join(data_dir, p) |
|
if not os.path.isfile(ref_fname): |
|
ref_fname = os.path.join(data_dir, p + ".png") |
|
if not os.path.isfile(ref_fname): |
|
ref_fname = os.path.join(data_dir, p + ".jpg") |
|
if not os.path.isfile(ref_fname): |
|
ref_fname = os.path.join(data_dir, p + ".jpeg") |
|
if not os.path.isfile(ref_fname): |
|
ref_fname = os.path.join(data_dir, p + ".exr") |
|
|
|
ref_image = read_image(ref_fname) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if testbed.color_space == ngp.ColorSpace.SRGB and ref_image.shape[2] == 4: |
|
|
|
ref_image[...,:3] = np.divide(ref_image[...,:3], ref_image[...,3:4], out=np.zeros_like(ref_image[...,:3]), where=ref_image[...,3:4] != 0) |
|
ref_image[...,:3] = linear_to_srgb(ref_image[...,:3]) |
|
ref_image[...,:3] *= ref_image[...,3:4] |
|
ref_image += (1.0 - ref_image[...,3:4]) * testbed.background_color |
|
ref_image[...,:3] = srgb_to_linear(ref_image[...,:3]) |
|
|
|
if i == 0: |
|
write_image("ref.png", ref_image) |
|
|
|
testbed.set_nerf_camera_matrix(np.matrix(frame["transform_matrix"])[:-1,:]) |
|
image = testbed.render(ref_image.shape[1], ref_image.shape[0], spp, True) |
|
|
|
if i == 0: |
|
write_image("out.png", image) |
|
|
|
diffimg = np.absolute(image - ref_image) |
|
diffimg[...,3:4] = 1.0 |
|
if i == 0: |
|
write_image("diff.png", diffimg) |
|
|
|
A = np.clip(linear_to_srgb(image[...,:3]), 0.0, 1.0) |
|
R = np.clip(linear_to_srgb(ref_image[...,:3]), 0.0, 1.0) |
|
mse = float(compute_error("MSE", A, R)) |
|
ssim = float(compute_error("SSIM", A, R)) |
|
totssim += ssim |
|
totmse += mse |
|
psnr = mse2psnr(mse) |
|
totpsnr += psnr |
|
minpsnr = psnr if psnr<minpsnr else minpsnr |
|
maxpsnr = psnr if psnr>maxpsnr else maxpsnr |
|
totcount = totcount+1 |
|
t.set_postfix(psnr = totpsnr/(totcount or 1)) |
|
|
|
psnr_avgmse = mse2psnr(totmse/(totcount or 1)) |
|
psnr = totpsnr/(totcount or 1) |
|
ssim = totssim/(totcount or 1) |
|
print(f"PSNR={psnr} [min={minpsnr} max={maxpsnr}] SSIM={ssim}") |
|
|
|
if args.save_mesh: |
|
res = args.marching_cubes_res or 256 |
|
print(f"Generating mesh via marching cubes and saving to {args.save_mesh}. Resolution=[{res},{res},{res}]") |
|
testbed.compute_and_save_marching_cubes_mesh(args.save_mesh, [res, res, res]) |
|
|
|
if ref_transforms: |
|
testbed.fov_axis = 0 |
|
testbed.fov = ref_transforms["camera_angle_x"] * 180 / np.pi |
|
if not args.screenshot_frames: |
|
args.screenshot_frames = range(len(ref_transforms["frames"])) |
|
print(args.screenshot_frames) |
|
for idx in args.screenshot_frames: |
|
f = ref_transforms["frames"][int(idx)] |
|
cam_matrix = f["transform_matrix"] |
|
testbed.set_nerf_camera_matrix(np.matrix(cam_matrix)[:-1,:]) |
|
outname = os.path.join(args.screenshot_dir, os.path.basename(f["file_path"])) |
|
|
|
|
|
if not os.path.splitext(outname)[1]: |
|
outname = outname + ".png" |
|
|
|
print(f"rendering {outname}") |
|
image = testbed.render(args.width or int(ref_transforms["w"]), args.height or int(ref_transforms["h"]), args.screenshot_spp, True) |
|
os.makedirs(os.path.dirname(outname), exist_ok=True) |
|
write_image(outname, image) |
|
elif args.screenshot_dir: |
|
outname = os.path.join(args.screenshot_dir, args.scene + "_" + network_stem) |
|
print(f"Rendering {outname}.png") |
|
image = testbed.render(args.width or 1920, args.height or 1080, args.screenshot_spp, True) |
|
if os.path.dirname(outname) != "": |
|
os.makedirs(os.path.dirname(outname), exist_ok=True) |
|
write_image(outname + ".png", image) |
|
|
|
if args.video_camera_path: |
|
testbed.load_camera_path(args.video_camera_path) |
|
testbed.loop_animation = args.video_loop_animation |
|
|
|
resolution = [args.width or 1920, args.height or 1080] |
|
n_frames = args.video_n_seconds * args.video_fps |
|
|
|
if "tmp" in os.listdir(): |
|
shutil.rmtree("tmp") |
|
os.makedirs("tmp") |
|
|
|
for i in tqdm(list(range(min(n_frames, n_frames+1))), unit="frames", desc=f"Rendering video"): |
|
testbed.camera_smoothing = args.video_camera_smoothing |
|
frame = testbed.render(resolution[0], resolution[1], args.video_spp, True, float(i)/n_frames, float(i + 1)/n_frames, args.video_fps, shutter_fraction=0.5) |
|
write_image(f"tmp/{i:04d}.jpg", np.clip(frame * 2**args.exposure, 0.0, 1.0), quality=100) |
|
|
|
os.system(f"ffmpeg -y -framerate {args.video_fps} -i tmp/%04d.jpg -c:v libx264 -pix_fmt yuv420p {args.video_output}") |
|
shutil.rmtree("tmp") |
|
|