#!/usr/bin/env python3 # Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import argparse import os import commentjson as json import numpy as np import shutil import time from common import * from scenes import * from tqdm import tqdm import pyngp as ngp # noqa def parse_args(): parser = argparse.ArgumentParser(description="Run instant neural graphics primitives with additional configuration & output options") parser.add_argument("--scene", "--training_data", default="", help="The scene to load. Can be the scene's name or a full path to the training data.") parser.add_argument("--mode", default="", const="nerf", nargs="?", choices=["nerf", "sdf", "image", "volume"], help="Mode can be 'nerf', 'sdf', 'image' or 'volume'. Inferred from the scene if unspecified.") parser.add_argument("--network", default="", help="Path to the network config. Uses the scene's default if unspecified.") parser.add_argument("--load_snapshot", default="", help="Load this snapshot before training. recommended extension: .msgpack") parser.add_argument("--save_snapshot", default="", help="Save this snapshot after training. recommended extension: .msgpack") parser.add_argument("--nerf_compatibility", action="store_true", help="Matches parameters with original NeRF. Can cause slowness and worse results on some scenes.") parser.add_argument("--test_transforms", default="", help="Path to a nerf style transforms json from which we will compute PSNR.") parser.add_argument("--near_distance", default=-1, type=float, help="Set the distance from the camera at which training rays start for nerf. <0 means use ngp default") parser.add_argument("--exposure", default=0.0, type=float, help="Controls the brightness of the image. Positive numbers increase brightness, negative numbers decrease it.") parser.add_argument("--screenshot_transforms", default="", help="Path to a nerf style transforms.json from which to save screenshots.") parser.add_argument("--screenshot_frames", nargs="*", help="Which frame(s) to take screenshots of.") parser.add_argument("--screenshot_dir", default="", help="Which directory to output screenshots to.") parser.add_argument("--screenshot_spp", type=int, default=16, help="Number of samples per pixel in screenshots.") parser.add_argument("--video_camera_path", default="", help="The camera path to render, e.g., base_cam.json.") parser.add_argument("--video_camera_smoothing", action="store_true", help="Applies additional smoothing to the camera trajectory with the caveat that the endpoint of the camera path may not be reached.") parser.add_argument("--video_loop_animation", action="store_true", help="Connect the last and first keyframes in a continuous loop.") parser.add_argument("--video_fps", type=int, default=60, help="Number of frames per second.") parser.add_argument("--video_n_seconds", type=int, default=1, help="Number of seconds the rendered video should be long.") parser.add_argument("--video_spp", type=int, default=8, help="Number of samples per pixel. A larger number means less noise, but slower rendering.") parser.add_argument("--video_output", type=str, default="video.mp4", help="Filename of the output video.") parser.add_argument("--save_mesh", default="", help="Output a marching-cubes based mesh from the NeRF or SDF model. Supports OBJ and PLY format.") parser.add_argument("--marching_cubes_res", default=256, type=int, help="Sets the resolution for the marching cubes grid.") parser.add_argument("--width", "--screenshot_w", type=int, default=0, help="Resolution width of GUI and screenshots.") parser.add_argument("--height", "--screenshot_h", type=int, default=0, help="Resolution height of GUI and screenshots.") parser.add_argument("--gui", action="store_true", help="Run the testbed GUI interactively.") parser.add_argument("--train", action="store_true", help="If the GUI is enabled, controls whether training starts immediately.") parser.add_argument("--n_steps", type=int, default=-1, help="Number of steps to train for before quitting.") parser.add_argument("--second_window", action="store_true", help="Open a second window containing a copy of the main output.") parser.add_argument("--sharpen", default=0, help="Set amount of sharpening applied to NeRF training images. Range 0.0 to 1.0.") return parser.parse_args() if __name__ == "__main__": args = parse_args() args.mode = args.mode or mode_from_scene(args.scene) or mode_from_scene(args.load_snapshot) if not args.mode: raise ValueError("Must specify either a valid '--mode' or '--scene' argument.") if args.mode == "sdf": mode = ngp.TestbedMode.Sdf configs_dir = os.path.join(ROOT_DIR, "configs", "sdf") scenes = scenes_sdf elif args.mode == "nerf": mode = ngp.TestbedMode.Nerf configs_dir = os.path.join(ROOT_DIR, "configs", "nerf") scenes = scenes_nerf elif args.mode == "image": mode = ngp.TestbedMode.Image configs_dir = os.path.join(ROOT_DIR, "configs", "image") scenes = scenes_image elif args.mode == "volume": mode = ngp.TestbedMode.Volume configs_dir = os.path.join(ROOT_DIR, "configs", "volume") scenes = scenes_volume else: raise ValueError("Must specify either a valid '--mode' or '--scene' argument.") base_network = os.path.join(configs_dir, "base.json") if args.scene in scenes: network = scenes[args.scene]["network"] if "network" in scenes[args.scene] else "base" base_network = os.path.join(configs_dir, network+".json") network = args.network if args.network else base_network if not os.path.isabs(network): network = os.path.join(configs_dir, network) testbed = ngp.Testbed(mode) testbed.nerf.sharpen = float(args.sharpen) testbed.exposure = args.exposure if mode == ngp.TestbedMode.Sdf: testbed.tonemap_curve = ngp.TonemapCurve.ACES if args.scene: scene = args.scene if not os.path.exists(args.scene) and args.scene in scenes: scene = os.path.join(scenes[args.scene]["data_dir"], scenes[args.scene]["dataset"]) testbed.load_training_data(scene) if args.gui: # Pick a sensible GUI resolution depending on arguments. sw = args.width or 1920 sh = args.height or 1080 while sw*sh > 1920*1080*4: sw = int(sw / 2) sh = int(sh / 2) testbed.init_window(sw, sh, second_window = args.second_window or False) if args.load_snapshot: snapshot = args.load_snapshot if not os.path.exists(snapshot) and snapshot in scenes: snapshot = default_snapshot_filename(scenes[snapshot]) print("Loading snapshot ", snapshot) testbed.load_snapshot(snapshot) else: testbed.reload_network_from_file(network) ref_transforms = {} if args.screenshot_transforms: # try to load the given file straight away print("Screenshot transforms from ", args.screenshot_transforms) with open(args.screenshot_transforms) as f: ref_transforms = json.load(f) testbed.shall_train = args.train if args.gui else True testbed.nerf.render_with_lens_distortion = True network_stem = os.path.splitext(os.path.basename(network))[0] if args.mode == "sdf": setup_colored_sdf(testbed, args.scene) if args.near_distance >= 0.0: print("NeRF training ray near_distance ", args.near_distance) testbed.nerf.training.near_distance = args.near_distance if args.nerf_compatibility: print(f"NeRF compatibility mode enabled") # Prior nerf papers accumulate/blend in the sRGB # color space. This messes not only with background # alpha, but also with DOF effects and the likes. # We support this behavior, but we only enable it # for the case of synthetic nerf data where we need # to compare PSNR numbers to results of prior work. testbed.color_space = ngp.ColorSpace.SRGB # No exponential cone tracing. Slightly increases # quality at the cost of speed. This is done by # default on scenes with AABB 1 (like the synthetic # ones), but not on larger scenes. So force the # setting here. testbed.nerf.cone_angle_constant = 0 # Optionally match nerf paper behaviour and train on a # fixed white bg. We prefer training on random BG colors. # testbed.background_color = [1.0, 1.0, 1.0, 1.0] # testbed.nerf.training.random_bg_color = False old_training_step = 0 n_steps = args.n_steps # If we loaded a snapshot, didn't specify a number of steps, _and_ didn't open a GUI, # don't train by default and instead assume that the goal is to render screenshots, # compute PSNR, or render a video. if n_steps < 0 and (not args.load_snapshot or args.gui): n_steps = 35000 tqdm_last_update = 0 if n_steps > 0: with tqdm(desc="Training", total=n_steps, unit="step") as t: while testbed.frame(): if testbed.want_repl(): repl(testbed) # What will happen when training is done? if testbed.training_step >= n_steps: if args.gui: testbed.shall_train = False else: break # Update progress bar if testbed.training_step < old_training_step or old_training_step == 0: old_training_step = 0 t.reset() now = time.monotonic() if now - tqdm_last_update > 0.1: t.update(testbed.training_step - old_training_step) t.set_postfix(loss=testbed.loss) old_training_step = testbed.training_step tqdm_last_update = now if args.save_snapshot: print("Saving snapshot ", args.save_snapshot) testbed.save_snapshot(args.save_snapshot, False) if args.test_transforms: print("Evaluating test transforms from ", args.test_transforms) with open(args.test_transforms) as f: test_transforms = json.load(f) data_dir=os.path.dirname(args.test_transforms) totmse = 0 totpsnr = 0 totssim = 0 totcount = 0 minpsnr = 1000 maxpsnr = 0 # Evaluate metrics on black background testbed.background_color = [0.0, 0.0, 0.0, 1.0] # Prior nerf papers don't typically do multi-sample anti aliasing. # So snap all pixels to the pixel centers. testbed.snap_to_pixel_centers = True spp = 8 testbed.nerf.render_min_transmittance = 1e-4 testbed.fov_axis = 0 testbed.fov = test_transforms["camera_angle_x"] * 180 / np.pi testbed.shall_train = False with tqdm(list(enumerate(test_transforms["frames"])), unit="images", desc=f"Rendering test frame") as t: for i, frame in t: p = frame["file_path"] if "." not in p: p = p + ".png" ref_fname = os.path.join(data_dir, p) if not os.path.isfile(ref_fname): ref_fname = os.path.join(data_dir, p + ".png") if not os.path.isfile(ref_fname): ref_fname = os.path.join(data_dir, p + ".jpg") if not os.path.isfile(ref_fname): ref_fname = os.path.join(data_dir, p + ".jpeg") if not os.path.isfile(ref_fname): ref_fname = os.path.join(data_dir, p + ".exr") ref_image = read_image(ref_fname) # NeRF blends with background colors in sRGB space, rather than first # transforming to linear space, blending there, and then converting back. # (See e.g. the PNG spec for more information on how the `alpha` channel # is always a linear quantity.) # The following lines of code reproduce NeRF's behavior (if enabled in # testbed) in order to make the numbers comparable. if testbed.color_space == ngp.ColorSpace.SRGB and ref_image.shape[2] == 4: # Since sRGB conversion is non-linear, alpha must be factored out of it ref_image[...,:3] = np.divide(ref_image[...,:3], ref_image[...,3:4], out=np.zeros_like(ref_image[...,:3]), where=ref_image[...,3:4] != 0) ref_image[...,:3] = linear_to_srgb(ref_image[...,:3]) ref_image[...,:3] *= ref_image[...,3:4] ref_image += (1.0 - ref_image[...,3:4]) * testbed.background_color ref_image[...,:3] = srgb_to_linear(ref_image[...,:3]) if i == 0: write_image("ref.png", ref_image) testbed.set_nerf_camera_matrix(np.matrix(frame["transform_matrix"])[:-1,:]) image = testbed.render(ref_image.shape[1], ref_image.shape[0], spp, True) if i == 0: write_image("out.png", image) diffimg = np.absolute(image - ref_image) diffimg[...,3:4] = 1.0 if i == 0: write_image("diff.png", diffimg) A = np.clip(linear_to_srgb(image[...,:3]), 0.0, 1.0) R = np.clip(linear_to_srgb(ref_image[...,:3]), 0.0, 1.0) mse = float(compute_error("MSE", A, R)) ssim = float(compute_error("SSIM", A, R)) totssim += ssim totmse += mse psnr = mse2psnr(mse) totpsnr += psnr minpsnr = psnr if psnrmaxpsnr else maxpsnr totcount = totcount+1 t.set_postfix(psnr = totpsnr/(totcount or 1)) psnr_avgmse = mse2psnr(totmse/(totcount or 1)) psnr = totpsnr/(totcount or 1) ssim = totssim/(totcount or 1) print(f"PSNR={psnr} [min={minpsnr} max={maxpsnr}] SSIM={ssim}") if args.save_mesh: res = args.marching_cubes_res or 256 print(f"Generating mesh via marching cubes and saving to {args.save_mesh}. Resolution=[{res},{res},{res}]") testbed.compute_and_save_marching_cubes_mesh(args.save_mesh, [res, res, res]) if ref_transforms: testbed.fov_axis = 0 testbed.fov = ref_transforms["camera_angle_x"] * 180 / np.pi if not args.screenshot_frames: args.screenshot_frames = range(len(ref_transforms["frames"])) print(args.screenshot_frames) for idx in args.screenshot_frames: f = ref_transforms["frames"][int(idx)] cam_matrix = f["transform_matrix"] testbed.set_nerf_camera_matrix(np.matrix(cam_matrix)[:-1,:]) outname = os.path.join(args.screenshot_dir, os.path.basename(f["file_path"])) # Some NeRF datasets lack the .png suffix in the dataset metadata if not os.path.splitext(outname)[1]: outname = outname + ".png" print(f"rendering {outname}") image = testbed.render(args.width or int(ref_transforms["w"]), args.height or int(ref_transforms["h"]), args.screenshot_spp, True) os.makedirs(os.path.dirname(outname), exist_ok=True) write_image(outname, image) elif args.screenshot_dir: outname = os.path.join(args.screenshot_dir, args.scene + "_" + network_stem) print(f"Rendering {outname}.png") image = testbed.render(args.width or 1920, args.height or 1080, args.screenshot_spp, True) if os.path.dirname(outname) != "": os.makedirs(os.path.dirname(outname), exist_ok=True) write_image(outname + ".png", image) if args.video_camera_path: testbed.load_camera_path(args.video_camera_path) testbed.loop_animation = args.video_loop_animation resolution = [args.width or 1920, args.height or 1080] n_frames = args.video_n_seconds * args.video_fps if "tmp" in os.listdir(): shutil.rmtree("tmp") os.makedirs("tmp") for i in tqdm(list(range(min(n_frames, n_frames+1))), unit="frames", desc=f"Rendering video"): testbed.camera_smoothing = args.video_camera_smoothing frame = testbed.render(resolution[0], resolution[1], args.video_spp, True, float(i)/n_frames, float(i + 1)/n_frames, args.video_fps, shutter_fraction=0.5) write_image(f"tmp/{i:04d}.jpg", np.clip(frame * 2**args.exposure, 0.0, 1.0), quality=100) os.system(f"ffmpeg -y -framerate {args.video_fps} -i tmp/%04d.jpg -c:v libx264 -pix_fmt yuv420p {args.video_output}") shutil.rmtree("tmp")