instant-ngp / scripts /flip /__init__.py
camenduru's picture
instant-ngp build
7873319
#########################################################################
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#########################################################################
# FLIP: A Difference Evaluator for Alternating Images
# High Performance Graphics, 2020.
# by Pontus Andersson, Jim Nilsson, Tomas Akenine-Moller, Magnus Oskarsson, Kalle Astrom, and Mark D. Fairchild
#
# Pointer to our paper: https://research.nvidia.com/publication/2020-07_FLIP
# code by Pontus Andersson, Jim Nilsson, and Tomas Akenine-Moller
import numpy as np
from scipy import signal
def color_space_transform(input_color, fromSpace2toSpace):
dim = input_color.shape
if fromSpace2toSpace == "srgb2linrgb":
limit = 0.04045
transformed_color = np.where(input_color > limit, np.power((input_color + 0.055) / 1.055, 2.4), input_color / 12.92)
elif fromSpace2toSpace == "linrgb2srgb":
limit = 0.0031308
transformed_color = np.where(input_color > limit, 1.055 * (input_color ** (1.0 / 2.4)) - 0.055, 12.92 * input_color)
elif fromSpace2toSpace == "linrgb2xyz" or fromSpace2toSpace == "xyz2linrgb":
# Source: https://www.image-engineering.de/library/technotes/958-how-to-convert-between-srgb-and-ciexyz
# Assumes D65 standard illuminant
a11 = 10135552 / 24577794
a12 = 8788810 / 24577794
a13 = 4435075 / 24577794
a21 = 2613072 / 12288897
a22 = 8788810 / 12288897
a23 = 887015 / 12288897
a31 = 1425312 / 73733382
a32 = 8788810 / 73733382
a33 = 70074185 / 73733382
A = np.array([[a11, a12, a13],
[a21, a22, a23],
[a31, a32, a33]])
input_color = np.transpose(input_color, (2, 0, 1)) # C(H*W)
if fromSpace2toSpace == "xyz2linrgb":
A = np.linalg.inv(A)
transformed_color = np.matmul(A, input_color)
transformed_color = np.transpose(transformed_color, (1, 2, 0))
elif fromSpace2toSpace == "xyz2ycxcz":
reference_illuminant = color_space_transform(np.ones(dim), 'linrgb2xyz')
input_color = np.divide(input_color, reference_illuminant)
y = 116 * input_color[1:2, :, :] - 16
cx = 500 * (input_color[0:1, :, :] - input_color[1:2, :, :])
cz = 200 * (input_color[1:2, :, :] - input_color[2:3, :, :])
transformed_color = np.concatenate((y, cx, cz), 0)
elif fromSpace2toSpace == "ycxcz2xyz":
y = (input_color[0:1, :, :] + 16) / 116
cx = input_color[1:2, :, :] / 500
cz = input_color[2:3, :, :] / 200
x = y + cx
z = y - cz
transformed_color = np.concatenate((x, y, z), 0)
reference_illuminant = color_space_transform(np.ones(dim), 'linrgb2xyz')
transformed_color = np.multiply(transformed_color, reference_illuminant)
elif fromSpace2toSpace == "xyz2lab":
reference_illuminant = color_space_transform(np.ones(dim), 'linrgb2xyz')
input_color = np.divide(input_color, reference_illuminant)
delta = 6 / 29
limit = 0.00885
input_color = np.where(input_color > limit, np.power(input_color, 1 / 3), (input_color / (3 * delta * delta)) + (4 / 29))
l = 116 * input_color[1:2, :, :] - 16
a = 500 * (input_color[0:1,:, :] - input_color[1:2, :, :])
b = 200 * (input_color[1:2, :, :] - input_color[2:3, :, :])
transformed_color = np.concatenate((l, a, b), 0)
elif fromSpace2toSpace == "lab2xyz":
y = (input_color[0:1, :, :] + 16) / 116
a = input_color[1:2, :, :] / 500
b = input_color[2:3, :, :] / 200
x = y + a
z = y - b
xyz = np.concatenate((x, y, z), 0)
delta = 6 / 29
xyz = np.where(xyz > delta, xyz ** 3, 3 * delta ** 2 * (xyz - 4 / 29))
reference_illuminant = color_space_transform(np.ones(dim), 'linrgb2xyz')
transformed_color = np.multiply(xyz, reference_illuminant)
elif fromSpace2toSpace == "srgb2xyz":
transformed_color = color_space_transform(input_color, 'srgb2linrgb')
transformed_color = color_space_transform(transformed_color,'linrgb2xyz')
elif fromSpace2toSpace == "srgb2ycxcz":
transformed_color = color_space_transform(input_color, 'srgb2linrgb')
transformed_color = color_space_transform(transformed_color, 'linrgb2xyz')
transformed_color = color_space_transform(transformed_color, 'xyz2ycxcz')
elif fromSpace2toSpace == "linrgb2ycxcz":
transformed_color = color_space_transform(input_color, 'linrgb2xyz')
transformed_color = color_space_transform(transformed_color, 'xyz2ycxcz')
elif fromSpace2toSpace == "srgb2lab":
transformed_color = color_space_transform(input_color, 'srgb2linrgb')
transformed_color = color_space_transform(transformed_color, 'linrgb2xyz')
transformed_color = color_space_transform(transformed_color, 'xyz2lab')
elif fromSpace2toSpace == "linrgb2lab":
transformed_color = color_space_transform(input_color, 'linrgb2xyz')
transformed_color = color_space_transform(transformed_color, 'xyz2lab')
elif fromSpace2toSpace == "ycxcz2linrgb":
transformed_color = color_space_transform(input_color, 'ycxcz2xyz')
transformed_color = color_space_transform(transformed_color, 'xyz2linrgb')
elif fromSpace2toSpace == "lab2srgb":
transformed_color = color_space_transform(input_color, 'lab2xyz')
transformed_color = color_space_transform(transformed_color, 'xyz2linrgb')
transformed_color = color_space_transform(transformed_color, 'linrgb2srgb')
elif fromSpace2toSpace == "ycxcz2lab":
transformed_color = color_space_transform(input_color, 'ycxcz2xyz')
transformed_color = color_space_transform(transformed_color, 'xyz2lab')
else:
print('The color transform is not defined!')
transformed_color = input_color
return transformed_color
def generate_spatial_filter(pixels_per_degree, channel):
a1_A = 1
b1_A = 0.0047
a2_A = 0
b2_A = 1e-5 # avoid division by 0
a1_rg = 1
b1_rg = 0.0053
a2_rg = 0
b2_rg = 1e-5 # avoid division by 0
a1_by = 34.1
b1_by = 0.04
a2_by = 13.5
b2_by = 0.025
if channel == "A": #Achromatic CSF
a1 = a1_A
b1 = b1_A
a2 = a2_A
b2 = b2_A
elif channel == "RG": #Red-Green CSF
a1 = a1_rg
b1 = b1_rg
a2 = a2_rg
b2 = b2_rg
elif channel == "BY": # Blue-Yellow CSF
a1 = a1_by
b1 = b1_by
a2 = a2_by
b2 = b2_by
# Determine evaluation domain
max_scale_parameter = max([b1_A, b2_A, b1_rg, b2_rg, b1_by, b2_by])
r = np.ceil(3 * np.sqrt(max_scale_parameter / (2 * np.pi**2)) * pixels_per_degree)
r = int(r)
deltaX = 1.0 / pixels_per_degree
x, y = np.meshgrid(range(-r, r + 1), range(-r, r + 1))
z = (x * deltaX)**2 + (y * deltaX)**2
# Generate weights
g = a1 * np.sqrt(np.pi / b1) * np.exp(-np.pi**2 * z / b1) + a2 * np.sqrt(np.pi / b2) * np.exp(-np.pi**2 * z / b2)
g = g / np.sum(g)
return g, r
def spatial_filter(img, s_a, s_rg, s_by, radius):
# Filters image img using Contrast Sensitivity Functions.
# Returns linear RGB
dim = img.shape
# Prepare convolution input
img_pad_a = np.pad(img[0:1, :, :], ((0, 0), (radius, radius), (radius, radius)), mode='edge')
img_pad_rg = np.pad(img[1:2, :, :], ((0, 0), (radius, radius), (radius, radius)), mode='edge')
img_pad_by = np.pad(img[2:3, :, :], ((0, 0), (radius, radius), (radius, radius)), mode='edge')
# Apply Gaussian filters
img_tilde_opponent = np.zeros((dim[0], dim[1], dim[2]))
img_tilde_opponent[0:1, :, :] = signal.convolve2d(img_pad_a.squeeze(0), s_a, mode='valid')
img_tilde_opponent[1:2, :, :] = signal.convolve2d(img_pad_rg.squeeze(0), s_rg, mode='valid')
img_tilde_opponent[2:3, :, :] = signal.convolve2d(img_pad_by.squeeze(0), s_by, mode='valid')
# Transform to linear RGB for clamp
img_tilde_linear_rgb = color_space_transform(img_tilde_opponent, 'ycxcz2linrgb')
# Clamp to RGB box
return np.clip(img_tilde_linear_rgb, 0.0, 1.0)
def hunt_adjustment(img):
# Applies Hunt adjustment to L*a*b* image img
# Extract luminance component
L = img[0:1, :, :]
# Apply Hunt adjustment
img_h = np.zeros(img.shape)
img_h[0:1, :, :] = L
img_h[1:2, :, :] = np.multiply((0.01 * L), img[1:2, :, :])
img_h[2:3, :, :] = np.multiply((0.01 * L), img[2:3, :, :])
return img_h
def hyab(reference, test):
# Computes HyAB distance between L*a*b* images reference and test
delta = reference - test
return abs(delta[0:1, :, :]) + np.linalg.norm(delta[1:3, :, :], axis=0)
def redistribute_errors(power_deltaE_hyab, cmax):
# Set redistribution parameters
pc = 0.4
pt = 0.95
# Re-map error to 0-1 range. Values between 0 and
# pccmax are mapped to the range [0, pt],
# while the rest are mapped to the range (pt, 1]
deltaE_c = np.zeros(power_deltaE_hyab.shape)
pccmax = pc * cmax
deltaE_c = np.where(power_deltaE_hyab < pccmax, (pt / pccmax) * power_deltaE_hyab, pt + ((power_deltaE_hyab - pccmax) / (cmax - pccmax)) * (1.0 - pt))
return deltaE_c
def feature_detection(imgy, pixels_per_degree, feature_type):
# Finds features of type feature_type in image img based on current PPD
# Set peak to trough value (2x standard deviations) of human edge
# detection filter
w = 0.082
# Compute filter radius
sd = 0.5 * w * pixels_per_degree
radius = int(np.ceil(3 * sd))
# Compute 2D Gaussian
[x, y] = np.meshgrid(range(-radius, radius+1), range(-radius, radius+1))
g = np.exp(-(x ** 2 + y ** 2) / (2 * sd * sd))
if feature_type == 'edge': # Edge detector
# Compute partial derivative in x-direction
Gx = np.multiply(-x, g)
else: # Point detector
# Compute second partial derivative in x-direction
Gx = np.multiply(x ** 2 / (sd * sd) - 1, g)
# Normalize positive weights to sum to 1 and negative weights to sum to -1
negative_weights_sum = -np.sum(Gx[Gx < 0])
positive_weights_sum = np.sum(Gx[Gx > 0])
Gx = np.where(Gx < 0, Gx / negative_weights_sum, Gx / positive_weights_sum)
# Detect features
imgy_pad = np.pad(imgy, ((0, 0), (radius, radius), (radius, radius)), mode='edge').squeeze(0)
featuresX = signal.convolve2d(imgy_pad, Gx, mode='valid')
featuresY = signal.convolve2d(imgy_pad, np.transpose(Gx), mode='valid')
return np.stack((featuresX, featuresY))
def compute_flip(reference, test, pixels_per_degree):
assert reference.shape == test.shape
# Set color and feature exponents
qc = 0.7
qf = 0.5
# Transform reference and test to opponent color space
reference = color_space_transform(reference, 'srgb2ycxcz')
test = color_space_transform(test, 'srgb2ycxcz')
# --- Color pipeline ---
# Spatial filtering
s_a, radius_a = generate_spatial_filter(pixels_per_degree, 'A')
s_rg, radius_rg = generate_spatial_filter(pixels_per_degree, 'RG')
s_by, radius_by = generate_spatial_filter(pixels_per_degree, 'BY')
radius = max(radius_a, radius_rg, radius_by)
filtered_reference = spatial_filter(reference, s_a, s_rg, s_by, radius)
filtered_test = spatial_filter(test, s_a, s_rg, s_by, radius)
# Perceptually Uniform Color Space
preprocessed_reference = hunt_adjustment(color_space_transform(filtered_reference, 'linrgb2lab'))
preprocessed_test = hunt_adjustment(color_space_transform(filtered_test, 'linrgb2lab'))
# Color metric
deltaE_hyab = hyab(preprocessed_reference, preprocessed_test)
hunt_adjusted_green = hunt_adjustment(color_space_transform(np.array([[[0.0]], [[1.0]], [[0.0]]]), 'linrgb2lab'))
hunt_adjusted_blue = hunt_adjustment(color_space_transform(np.array([[[0.0]], [[0.0]], [[1.0]]]), 'linrgb2lab'))
cmax = np.power(hyab(hunt_adjusted_green, hunt_adjusted_blue), qc)
deltaE_c = redistribute_errors(np.power(deltaE_hyab, qc), cmax)
# --- Feature pipeline ---
# Extract and normalize achromatic component
reference_y = (reference[0:1, :, :] + 16) / 116
test_y = (test[0:1, :, :] + 16) / 116
# Edge and point detection
edges_reference = feature_detection(reference_y, pixels_per_degree, 'edge')
points_reference = feature_detection(reference_y, pixels_per_degree, 'point')
edges_test = feature_detection(test_y, pixels_per_degree, 'edge')
points_test = feature_detection(test_y, pixels_per_degree, 'point')
# Feature metric
deltaE_f = np.maximum(abs(np.linalg.norm(edges_reference, axis=0) - np.linalg.norm(edges_test, axis=0)), abs(np.linalg.norm(points_test, axis=0) - np.linalg.norm(points_reference, axis=0)))
deltaE_f = np.power(((1 / np.sqrt(2)) * deltaE_f), qf)
# --- Final error ---
return np.power(deltaE_c, 1 - deltaE_f)