File size: 14,504 Bytes
7873319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#########################################################################
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#  * Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#  * Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in the
#    documentation and/or other materials provided with the distribution.
#  * Neither the name of NVIDIA CORPORATION nor the names of its
#    contributors may be used to endorse or promote products derived
#    from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#########################################################################

# FLIP: A Difference Evaluator for Alternating Images
# High Performance Graphics, 2020.
# by Pontus Andersson, Jim Nilsson, Tomas Akenine-Moller, Magnus Oskarsson, Kalle Astrom, and Mark D. Fairchild
#
# Pointer to our paper: https://research.nvidia.com/publication/2020-07_FLIP
# code by Pontus Andersson, Jim Nilsson, and Tomas Akenine-Moller

import numpy as np
from scipy import signal

def color_space_transform(input_color, fromSpace2toSpace):
    dim = input_color.shape

    if fromSpace2toSpace == "srgb2linrgb":
        limit = 0.04045
        transformed_color = np.where(input_color > limit, np.power((input_color + 0.055) / 1.055, 2.4), input_color / 12.92)

    elif fromSpace2toSpace == "linrgb2srgb":
        limit = 0.0031308
        transformed_color = np.where(input_color > limit, 1.055 * (input_color ** (1.0 / 2.4)) - 0.055, 12.92 * input_color)

    elif fromSpace2toSpace == "linrgb2xyz" or fromSpace2toSpace == "xyz2linrgb":
        # Source: https://www.image-engineering.de/library/technotes/958-how-to-convert-between-srgb-and-ciexyz
        # Assumes D65 standard illuminant
        a11 = 10135552 / 24577794
        a12 = 8788810  / 24577794
        a13 = 4435075  / 24577794
        a21 = 2613072  / 12288897
        a22 = 8788810  / 12288897
        a23 = 887015   / 12288897
        a31 = 1425312  / 73733382
        a32 = 8788810  / 73733382
        a33 = 70074185 / 73733382
        A = np.array([[a11, a12, a13],
                        [a21, a22, a23],
                        [a31, a32, a33]])

        input_color = np.transpose(input_color, (2, 0, 1)) # C(H*W)
        if fromSpace2toSpace == "xyz2linrgb":
            A = np.linalg.inv(A)
        transformed_color = np.matmul(A, input_color)
        transformed_color = np.transpose(transformed_color, (1, 2, 0))

    elif fromSpace2toSpace == "xyz2ycxcz":
        reference_illuminant = color_space_transform(np.ones(dim), 'linrgb2xyz')
        input_color = np.divide(input_color, reference_illuminant)
        y = 116 * input_color[1:2, :, :] - 16
        cx = 500 * (input_color[0:1, :, :] - input_color[1:2, :, :])
        cz = 200 * (input_color[1:2, :, :] - input_color[2:3, :, :])
        transformed_color = np.concatenate((y, cx, cz), 0)

    elif fromSpace2toSpace == "ycxcz2xyz":
        y = (input_color[0:1, :, :] + 16) / 116
        cx = input_color[1:2, :, :] / 500
        cz = input_color[2:3, :, :] / 200

        x = y + cx
        z = y - cz
        transformed_color = np.concatenate((x, y, z), 0)

        reference_illuminant = color_space_transform(np.ones(dim), 'linrgb2xyz')
        transformed_color = np.multiply(transformed_color, reference_illuminant)

    elif fromSpace2toSpace == "xyz2lab":
        reference_illuminant = color_space_transform(np.ones(dim), 'linrgb2xyz')
        input_color = np.divide(input_color, reference_illuminant)
        delta = 6 / 29
        limit = 0.00885

        input_color = np.where(input_color > limit, np.power(input_color, 1 / 3), (input_color / (3 * delta * delta)) + (4 / 29))

        l = 116 * input_color[1:2, :, :] - 16
        a = 500 * (input_color[0:1,:, :] - input_color[1:2, :, :])
        b = 200 * (input_color[1:2, :, :] - input_color[2:3, :, :])

        transformed_color = np.concatenate((l, a, b), 0)

    elif fromSpace2toSpace == "lab2xyz":
        y = (input_color[0:1, :, :] + 16) / 116
        a =  input_color[1:2, :, :] / 500
        b =  input_color[2:3, :, :] / 200

        x = y + a
        z = y - b

        xyz = np.concatenate((x, y, z), 0)
        delta = 6 / 29
        xyz = np.where(xyz > delta,  xyz ** 3, 3 * delta ** 2 * (xyz - 4 / 29))

        reference_illuminant = color_space_transform(np.ones(dim), 'linrgb2xyz')
        transformed_color = np.multiply(xyz, reference_illuminant)

    elif fromSpace2toSpace == "srgb2xyz":
        transformed_color = color_space_transform(input_color, 'srgb2linrgb')
        transformed_color = color_space_transform(transformed_color,'linrgb2xyz')
    elif fromSpace2toSpace == "srgb2ycxcz":
        transformed_color = color_space_transform(input_color, 'srgb2linrgb')
        transformed_color = color_space_transform(transformed_color, 'linrgb2xyz')
        transformed_color = color_space_transform(transformed_color, 'xyz2ycxcz')
    elif fromSpace2toSpace == "linrgb2ycxcz":
        transformed_color = color_space_transform(input_color, 'linrgb2xyz')
        transformed_color = color_space_transform(transformed_color, 'xyz2ycxcz')
    elif fromSpace2toSpace == "srgb2lab":
        transformed_color = color_space_transform(input_color, 'srgb2linrgb')
        transformed_color = color_space_transform(transformed_color, 'linrgb2xyz')
        transformed_color = color_space_transform(transformed_color, 'xyz2lab')
    elif fromSpace2toSpace == "linrgb2lab":
        transformed_color = color_space_transform(input_color, 'linrgb2xyz')
        transformed_color = color_space_transform(transformed_color, 'xyz2lab')
    elif fromSpace2toSpace == "ycxcz2linrgb":
        transformed_color = color_space_transform(input_color, 'ycxcz2xyz')
        transformed_color = color_space_transform(transformed_color, 'xyz2linrgb')
    elif fromSpace2toSpace == "lab2srgb":
        transformed_color = color_space_transform(input_color, 'lab2xyz')
        transformed_color = color_space_transform(transformed_color, 'xyz2linrgb')
        transformed_color = color_space_transform(transformed_color, 'linrgb2srgb')
    elif fromSpace2toSpace == "ycxcz2lab":
        transformed_color = color_space_transform(input_color, 'ycxcz2xyz')
        transformed_color = color_space_transform(transformed_color, 'xyz2lab')
    else:
        print('The color transform is not defined!')
        transformed_color = input_color

    return transformed_color

def generate_spatial_filter(pixels_per_degree, channel):
    a1_A = 1 
    b1_A = 0.0047
    a2_A = 0
    b2_A = 1e-5 # avoid division by 0
    a1_rg = 1
    b1_rg = 0.0053
    a2_rg = 0
    b2_rg = 1e-5 # avoid division by 0
    a1_by = 34.1
    b1_by = 0.04
    a2_by = 13.5
    b2_by = 0.025
    if channel == "A": #Achromatic CSF
        a1 = a1_A
        b1 = b1_A
        a2 = a2_A
        b2 = b2_A
    elif channel == "RG": #Red-Green CSF
        a1 = a1_rg
        b1 = b1_rg
        a2 = a2_rg
        b2 = b2_rg
    elif channel == "BY": # Blue-Yellow CSF
        a1 = a1_by
        b1 = b1_by
        a2 = a2_by
        b2 = b2_by

    # Determine evaluation domain
    max_scale_parameter = max([b1_A, b2_A, b1_rg, b2_rg, b1_by, b2_by])
    r = np.ceil(3 * np.sqrt(max_scale_parameter / (2 * np.pi**2)) * pixels_per_degree)
    r = int(r)
    deltaX = 1.0 / pixels_per_degree
    x, y = np.meshgrid(range(-r, r + 1), range(-r, r + 1))
    z = (x * deltaX)**2 + (y * deltaX)**2
    
    # Generate weights
    g = a1 * np.sqrt(np.pi / b1) * np.exp(-np.pi**2 * z / b1) + a2 * np.sqrt(np.pi / b2) * np.exp(-np.pi**2 * z / b2)
    g = g / np.sum(g)

    return g, r

def spatial_filter(img, s_a, s_rg, s_by, radius):
    # Filters image img using Contrast Sensitivity Functions.
    # Returns linear RGB

    dim = img.shape
    # Prepare convolution input
    img_pad_a = np.pad(img[0:1, :, :], ((0, 0), (radius, radius), (radius, radius)), mode='edge')
    img_pad_rg = np.pad(img[1:2, :, :], ((0, 0), (radius, radius), (radius, radius)), mode='edge')
    img_pad_by = np.pad(img[2:3, :, :], ((0, 0), (radius, radius), (radius, radius)), mode='edge')

    # Apply Gaussian filters
    img_tilde_opponent = np.zeros((dim[0], dim[1], dim[2]))
    img_tilde_opponent[0:1, :, :] = signal.convolve2d(img_pad_a.squeeze(0), s_a, mode='valid')
    img_tilde_opponent[1:2, :, :] = signal.convolve2d(img_pad_rg.squeeze(0), s_rg, mode='valid')
    img_tilde_opponent[2:3, :, :] = signal.convolve2d(img_pad_by.squeeze(0), s_by, mode='valid')

    # Transform to linear RGB for clamp
    img_tilde_linear_rgb = color_space_transform(img_tilde_opponent, 'ycxcz2linrgb')
    
    # Clamp to RGB box
    return np.clip(img_tilde_linear_rgb, 0.0, 1.0)

def hunt_adjustment(img):
    # Applies Hunt adjustment to L*a*b* image img
    
    # Extract luminance component
    L = img[0:1, :, :]
    
    # Apply Hunt adjustment
    img_h = np.zeros(img.shape)
    img_h[0:1, :, :] = L
    img_h[1:2, :, :] = np.multiply((0.01 * L), img[1:2, :, :])
    img_h[2:3, :, :] = np.multiply((0.01 * L), img[2:3, :, :])

    return img_h

def hyab(reference, test):
    # Computes HyAB distance between L*a*b* images reference and test
    delta = reference - test
    return abs(delta[0:1, :, :]) + np.linalg.norm(delta[1:3, :, :], axis=0)

def redistribute_errors(power_deltaE_hyab, cmax):
    # Set redistribution parameters
    pc = 0.4
    pt = 0.95
    
    # Re-map error to 0-1 range. Values between 0 and
    # pccmax are mapped to the range [0, pt],
    # while the rest are mapped to the range (pt, 1]
    deltaE_c = np.zeros(power_deltaE_hyab.shape)
    pccmax = pc * cmax
    deltaE_c = np.where(power_deltaE_hyab < pccmax, (pt / pccmax) * power_deltaE_hyab, pt + ((power_deltaE_hyab - pccmax) / (cmax - pccmax)) * (1.0 - pt))

    return deltaE_c

def feature_detection(imgy, pixels_per_degree, feature_type):
    # Finds features of type feature_type in image img based on current PPD
    
    # Set peak to trough value (2x standard deviations) of human edge
    # detection filter
    w = 0.082
    
    # Compute filter radius
    sd = 0.5 * w * pixels_per_degree
    radius = int(np.ceil(3 * sd))

    # Compute 2D Gaussian
    [x, y] = np.meshgrid(range(-radius, radius+1), range(-radius, radius+1))
    g = np.exp(-(x ** 2 + y ** 2) / (2 * sd * sd))
    
    if feature_type == 'edge': # Edge detector
        # Compute partial derivative in x-direction
        Gx = np.multiply(-x, g)
    else: # Point detector
        # Compute second partial derivative in x-direction
        Gx = np.multiply(x ** 2 / (sd * sd) - 1, g)
 
    # Normalize positive weights to sum to 1 and negative weights to sum to -1
    negative_weights_sum = -np.sum(Gx[Gx < 0])
    positive_weights_sum = np.sum(Gx[Gx > 0])
    Gx = np.where(Gx < 0, Gx / negative_weights_sum, Gx / positive_weights_sum)
    
    # Detect features
    imgy_pad = np.pad(imgy, ((0, 0), (radius, radius), (radius, radius)), mode='edge').squeeze(0)
    featuresX = signal.convolve2d(imgy_pad, Gx, mode='valid')
    featuresY = signal.convolve2d(imgy_pad, np.transpose(Gx), mode='valid')

    return np.stack((featuresX, featuresY))

def compute_flip(reference, test, pixels_per_degree):
    assert reference.shape == test.shape

    # Set color and feature exponents
    qc = 0.7
    qf = 0.5

    # Transform reference and test to opponent color space
    reference = color_space_transform(reference, 'srgb2ycxcz')
    test = color_space_transform(test, 'srgb2ycxcz')

    # --- Color pipeline ---
    # Spatial filtering
    s_a, radius_a = generate_spatial_filter(pixels_per_degree, 'A')
    s_rg, radius_rg = generate_spatial_filter(pixels_per_degree, 'RG')
    s_by, radius_by = generate_spatial_filter(pixels_per_degree, 'BY')
    radius = max(radius_a, radius_rg, radius_by)
    filtered_reference = spatial_filter(reference, s_a, s_rg, s_by, radius)
    filtered_test = spatial_filter(test, s_a, s_rg, s_by, radius)

    # Perceptually Uniform Color Space
    preprocessed_reference = hunt_adjustment(color_space_transform(filtered_reference, 'linrgb2lab'))
    preprocessed_test = hunt_adjustment(color_space_transform(filtered_test, 'linrgb2lab'))

    # Color metric
    deltaE_hyab = hyab(preprocessed_reference, preprocessed_test)
    hunt_adjusted_green = hunt_adjustment(color_space_transform(np.array([[[0.0]], [[1.0]], [[0.0]]]), 'linrgb2lab'))
    hunt_adjusted_blue = hunt_adjustment(color_space_transform(np.array([[[0.0]], [[0.0]], [[1.0]]]), 'linrgb2lab'))
    cmax = np.power(hyab(hunt_adjusted_green, hunt_adjusted_blue), qc)
    deltaE_c = redistribute_errors(np.power(deltaE_hyab, qc), cmax)

    # --- Feature pipeline ---
    # Extract and normalize achromatic component
    reference_y = (reference[0:1, :, :] + 16) / 116
    test_y = (test[0:1, :, :] + 16) / 116

    # Edge and point detection
    edges_reference = feature_detection(reference_y, pixels_per_degree, 'edge')
    points_reference = feature_detection(reference_y, pixels_per_degree, 'point')
    edges_test = feature_detection(test_y, pixels_per_degree, 'edge')
    points_test = feature_detection(test_y, pixels_per_degree, 'point')

    # Feature metric
    deltaE_f = np.maximum(abs(np.linalg.norm(edges_reference, axis=0) - np.linalg.norm(edges_test, axis=0)), abs(np.linalg.norm(points_test, axis=0) - np.linalg.norm(points_reference, axis=0)))
    deltaE_f = np.power(((1 / np.sqrt(2)) * deltaE_f), qf)

    # --- Final error ---
    return np.power(deltaE_c, 1 - deltaE_f)