File size: 14,504 Bytes
7873319 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
#########################################################################
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#########################################################################
# FLIP: A Difference Evaluator for Alternating Images
# High Performance Graphics, 2020.
# by Pontus Andersson, Jim Nilsson, Tomas Akenine-Moller, Magnus Oskarsson, Kalle Astrom, and Mark D. Fairchild
#
# Pointer to our paper: https://research.nvidia.com/publication/2020-07_FLIP
# code by Pontus Andersson, Jim Nilsson, and Tomas Akenine-Moller
import numpy as np
from scipy import signal
def color_space_transform(input_color, fromSpace2toSpace):
dim = input_color.shape
if fromSpace2toSpace == "srgb2linrgb":
limit = 0.04045
transformed_color = np.where(input_color > limit, np.power((input_color + 0.055) / 1.055, 2.4), input_color / 12.92)
elif fromSpace2toSpace == "linrgb2srgb":
limit = 0.0031308
transformed_color = np.where(input_color > limit, 1.055 * (input_color ** (1.0 / 2.4)) - 0.055, 12.92 * input_color)
elif fromSpace2toSpace == "linrgb2xyz" or fromSpace2toSpace == "xyz2linrgb":
# Source: https://www.image-engineering.de/library/technotes/958-how-to-convert-between-srgb-and-ciexyz
# Assumes D65 standard illuminant
a11 = 10135552 / 24577794
a12 = 8788810 / 24577794
a13 = 4435075 / 24577794
a21 = 2613072 / 12288897
a22 = 8788810 / 12288897
a23 = 887015 / 12288897
a31 = 1425312 / 73733382
a32 = 8788810 / 73733382
a33 = 70074185 / 73733382
A = np.array([[a11, a12, a13],
[a21, a22, a23],
[a31, a32, a33]])
input_color = np.transpose(input_color, (2, 0, 1)) # C(H*W)
if fromSpace2toSpace == "xyz2linrgb":
A = np.linalg.inv(A)
transformed_color = np.matmul(A, input_color)
transformed_color = np.transpose(transformed_color, (1, 2, 0))
elif fromSpace2toSpace == "xyz2ycxcz":
reference_illuminant = color_space_transform(np.ones(dim), 'linrgb2xyz')
input_color = np.divide(input_color, reference_illuminant)
y = 116 * input_color[1:2, :, :] - 16
cx = 500 * (input_color[0:1, :, :] - input_color[1:2, :, :])
cz = 200 * (input_color[1:2, :, :] - input_color[2:3, :, :])
transformed_color = np.concatenate((y, cx, cz), 0)
elif fromSpace2toSpace == "ycxcz2xyz":
y = (input_color[0:1, :, :] + 16) / 116
cx = input_color[1:2, :, :] / 500
cz = input_color[2:3, :, :] / 200
x = y + cx
z = y - cz
transformed_color = np.concatenate((x, y, z), 0)
reference_illuminant = color_space_transform(np.ones(dim), 'linrgb2xyz')
transformed_color = np.multiply(transformed_color, reference_illuminant)
elif fromSpace2toSpace == "xyz2lab":
reference_illuminant = color_space_transform(np.ones(dim), 'linrgb2xyz')
input_color = np.divide(input_color, reference_illuminant)
delta = 6 / 29
limit = 0.00885
input_color = np.where(input_color > limit, np.power(input_color, 1 / 3), (input_color / (3 * delta * delta)) + (4 / 29))
l = 116 * input_color[1:2, :, :] - 16
a = 500 * (input_color[0:1,:, :] - input_color[1:2, :, :])
b = 200 * (input_color[1:2, :, :] - input_color[2:3, :, :])
transformed_color = np.concatenate((l, a, b), 0)
elif fromSpace2toSpace == "lab2xyz":
y = (input_color[0:1, :, :] + 16) / 116
a = input_color[1:2, :, :] / 500
b = input_color[2:3, :, :] / 200
x = y + a
z = y - b
xyz = np.concatenate((x, y, z), 0)
delta = 6 / 29
xyz = np.where(xyz > delta, xyz ** 3, 3 * delta ** 2 * (xyz - 4 / 29))
reference_illuminant = color_space_transform(np.ones(dim), 'linrgb2xyz')
transformed_color = np.multiply(xyz, reference_illuminant)
elif fromSpace2toSpace == "srgb2xyz":
transformed_color = color_space_transform(input_color, 'srgb2linrgb')
transformed_color = color_space_transform(transformed_color,'linrgb2xyz')
elif fromSpace2toSpace == "srgb2ycxcz":
transformed_color = color_space_transform(input_color, 'srgb2linrgb')
transformed_color = color_space_transform(transformed_color, 'linrgb2xyz')
transformed_color = color_space_transform(transformed_color, 'xyz2ycxcz')
elif fromSpace2toSpace == "linrgb2ycxcz":
transformed_color = color_space_transform(input_color, 'linrgb2xyz')
transformed_color = color_space_transform(transformed_color, 'xyz2ycxcz')
elif fromSpace2toSpace == "srgb2lab":
transformed_color = color_space_transform(input_color, 'srgb2linrgb')
transformed_color = color_space_transform(transformed_color, 'linrgb2xyz')
transformed_color = color_space_transform(transformed_color, 'xyz2lab')
elif fromSpace2toSpace == "linrgb2lab":
transformed_color = color_space_transform(input_color, 'linrgb2xyz')
transformed_color = color_space_transform(transformed_color, 'xyz2lab')
elif fromSpace2toSpace == "ycxcz2linrgb":
transformed_color = color_space_transform(input_color, 'ycxcz2xyz')
transformed_color = color_space_transform(transformed_color, 'xyz2linrgb')
elif fromSpace2toSpace == "lab2srgb":
transformed_color = color_space_transform(input_color, 'lab2xyz')
transformed_color = color_space_transform(transformed_color, 'xyz2linrgb')
transformed_color = color_space_transform(transformed_color, 'linrgb2srgb')
elif fromSpace2toSpace == "ycxcz2lab":
transformed_color = color_space_transform(input_color, 'ycxcz2xyz')
transformed_color = color_space_transform(transformed_color, 'xyz2lab')
else:
print('The color transform is not defined!')
transformed_color = input_color
return transformed_color
def generate_spatial_filter(pixels_per_degree, channel):
a1_A = 1
b1_A = 0.0047
a2_A = 0
b2_A = 1e-5 # avoid division by 0
a1_rg = 1
b1_rg = 0.0053
a2_rg = 0
b2_rg = 1e-5 # avoid division by 0
a1_by = 34.1
b1_by = 0.04
a2_by = 13.5
b2_by = 0.025
if channel == "A": #Achromatic CSF
a1 = a1_A
b1 = b1_A
a2 = a2_A
b2 = b2_A
elif channel == "RG": #Red-Green CSF
a1 = a1_rg
b1 = b1_rg
a2 = a2_rg
b2 = b2_rg
elif channel == "BY": # Blue-Yellow CSF
a1 = a1_by
b1 = b1_by
a2 = a2_by
b2 = b2_by
# Determine evaluation domain
max_scale_parameter = max([b1_A, b2_A, b1_rg, b2_rg, b1_by, b2_by])
r = np.ceil(3 * np.sqrt(max_scale_parameter / (2 * np.pi**2)) * pixels_per_degree)
r = int(r)
deltaX = 1.0 / pixels_per_degree
x, y = np.meshgrid(range(-r, r + 1), range(-r, r + 1))
z = (x * deltaX)**2 + (y * deltaX)**2
# Generate weights
g = a1 * np.sqrt(np.pi / b1) * np.exp(-np.pi**2 * z / b1) + a2 * np.sqrt(np.pi / b2) * np.exp(-np.pi**2 * z / b2)
g = g / np.sum(g)
return g, r
def spatial_filter(img, s_a, s_rg, s_by, radius):
# Filters image img using Contrast Sensitivity Functions.
# Returns linear RGB
dim = img.shape
# Prepare convolution input
img_pad_a = np.pad(img[0:1, :, :], ((0, 0), (radius, radius), (radius, radius)), mode='edge')
img_pad_rg = np.pad(img[1:2, :, :], ((0, 0), (radius, radius), (radius, radius)), mode='edge')
img_pad_by = np.pad(img[2:3, :, :], ((0, 0), (radius, radius), (radius, radius)), mode='edge')
# Apply Gaussian filters
img_tilde_opponent = np.zeros((dim[0], dim[1], dim[2]))
img_tilde_opponent[0:1, :, :] = signal.convolve2d(img_pad_a.squeeze(0), s_a, mode='valid')
img_tilde_opponent[1:2, :, :] = signal.convolve2d(img_pad_rg.squeeze(0), s_rg, mode='valid')
img_tilde_opponent[2:3, :, :] = signal.convolve2d(img_pad_by.squeeze(0), s_by, mode='valid')
# Transform to linear RGB for clamp
img_tilde_linear_rgb = color_space_transform(img_tilde_opponent, 'ycxcz2linrgb')
# Clamp to RGB box
return np.clip(img_tilde_linear_rgb, 0.0, 1.0)
def hunt_adjustment(img):
# Applies Hunt adjustment to L*a*b* image img
# Extract luminance component
L = img[0:1, :, :]
# Apply Hunt adjustment
img_h = np.zeros(img.shape)
img_h[0:1, :, :] = L
img_h[1:2, :, :] = np.multiply((0.01 * L), img[1:2, :, :])
img_h[2:3, :, :] = np.multiply((0.01 * L), img[2:3, :, :])
return img_h
def hyab(reference, test):
# Computes HyAB distance between L*a*b* images reference and test
delta = reference - test
return abs(delta[0:1, :, :]) + np.linalg.norm(delta[1:3, :, :], axis=0)
def redistribute_errors(power_deltaE_hyab, cmax):
# Set redistribution parameters
pc = 0.4
pt = 0.95
# Re-map error to 0-1 range. Values between 0 and
# pccmax are mapped to the range [0, pt],
# while the rest are mapped to the range (pt, 1]
deltaE_c = np.zeros(power_deltaE_hyab.shape)
pccmax = pc * cmax
deltaE_c = np.where(power_deltaE_hyab < pccmax, (pt / pccmax) * power_deltaE_hyab, pt + ((power_deltaE_hyab - pccmax) / (cmax - pccmax)) * (1.0 - pt))
return deltaE_c
def feature_detection(imgy, pixels_per_degree, feature_type):
# Finds features of type feature_type in image img based on current PPD
# Set peak to trough value (2x standard deviations) of human edge
# detection filter
w = 0.082
# Compute filter radius
sd = 0.5 * w * pixels_per_degree
radius = int(np.ceil(3 * sd))
# Compute 2D Gaussian
[x, y] = np.meshgrid(range(-radius, radius+1), range(-radius, radius+1))
g = np.exp(-(x ** 2 + y ** 2) / (2 * sd * sd))
if feature_type == 'edge': # Edge detector
# Compute partial derivative in x-direction
Gx = np.multiply(-x, g)
else: # Point detector
# Compute second partial derivative in x-direction
Gx = np.multiply(x ** 2 / (sd * sd) - 1, g)
# Normalize positive weights to sum to 1 and negative weights to sum to -1
negative_weights_sum = -np.sum(Gx[Gx < 0])
positive_weights_sum = np.sum(Gx[Gx > 0])
Gx = np.where(Gx < 0, Gx / negative_weights_sum, Gx / positive_weights_sum)
# Detect features
imgy_pad = np.pad(imgy, ((0, 0), (radius, radius), (radius, radius)), mode='edge').squeeze(0)
featuresX = signal.convolve2d(imgy_pad, Gx, mode='valid')
featuresY = signal.convolve2d(imgy_pad, np.transpose(Gx), mode='valid')
return np.stack((featuresX, featuresY))
def compute_flip(reference, test, pixels_per_degree):
assert reference.shape == test.shape
# Set color and feature exponents
qc = 0.7
qf = 0.5
# Transform reference and test to opponent color space
reference = color_space_transform(reference, 'srgb2ycxcz')
test = color_space_transform(test, 'srgb2ycxcz')
# --- Color pipeline ---
# Spatial filtering
s_a, radius_a = generate_spatial_filter(pixels_per_degree, 'A')
s_rg, radius_rg = generate_spatial_filter(pixels_per_degree, 'RG')
s_by, radius_by = generate_spatial_filter(pixels_per_degree, 'BY')
radius = max(radius_a, radius_rg, radius_by)
filtered_reference = spatial_filter(reference, s_a, s_rg, s_by, radius)
filtered_test = spatial_filter(test, s_a, s_rg, s_by, radius)
# Perceptually Uniform Color Space
preprocessed_reference = hunt_adjustment(color_space_transform(filtered_reference, 'linrgb2lab'))
preprocessed_test = hunt_adjustment(color_space_transform(filtered_test, 'linrgb2lab'))
# Color metric
deltaE_hyab = hyab(preprocessed_reference, preprocessed_test)
hunt_adjusted_green = hunt_adjustment(color_space_transform(np.array([[[0.0]], [[1.0]], [[0.0]]]), 'linrgb2lab'))
hunt_adjusted_blue = hunt_adjustment(color_space_transform(np.array([[[0.0]], [[0.0]], [[1.0]]]), 'linrgb2lab'))
cmax = np.power(hyab(hunt_adjusted_green, hunt_adjusted_blue), qc)
deltaE_c = redistribute_errors(np.power(deltaE_hyab, qc), cmax)
# --- Feature pipeline ---
# Extract and normalize achromatic component
reference_y = (reference[0:1, :, :] + 16) / 116
test_y = (test[0:1, :, :] + 16) / 116
# Edge and point detection
edges_reference = feature_detection(reference_y, pixels_per_degree, 'edge')
points_reference = feature_detection(reference_y, pixels_per_degree, 'point')
edges_test = feature_detection(test_y, pixels_per_degree, 'edge')
points_test = feature_detection(test_y, pixels_per_degree, 'point')
# Feature metric
deltaE_f = np.maximum(abs(np.linalg.norm(edges_reference, axis=0) - np.linalg.norm(edges_test, axis=0)), abs(np.linalg.norm(points_test, axis=0) - np.linalg.norm(points_reference, axis=0)))
deltaE_f = np.power(((1 / np.sqrt(2)) * deltaE_f), qf)
# --- Final error ---
return np.power(deltaE_c, 1 - deltaE_f)
|