|
--- |
|
language: multilingual |
|
|
|
tags: |
|
- biomedical |
|
- lexical-semantics |
|
- cross-lingual |
|
|
|
datasets: |
|
- UMLS |
|
|
|
**[news]** A cross-lingual extension of SapBERT will appear in the main onference of **ACL 2021**! <br> |
|
**[news]** SapBERT will appear in the conference proceedings of **NAACL 2021**! |
|
|
|
### SapBERT-XLMR |
|
SapBERT [(Liu et al. 2020)](https://arxiv.org/pdf/2010.11784.pdf) trained with [UMLS](https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html) 2020AB, using [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) as the base model. Please use [CLS] as the representation of the input. |
|
|
|
|
|
#### Extracting embeddings from SapBERT |
|
|
|
The following script converts a list of strings (entity names) into embeddings. |
|
```python |
|
import numpy as np |
|
import torch |
|
from tqdm.auto import tqdm |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext") |
|
model = AutoModel.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext").cuda() |
|
|
|
# replace with your own list of entity names |
|
all_names = ["covid-19", "Coronavirus infection", "high fever", "Tumor of posterior wall of oropharynx"] |
|
|
|
bs = 128 # batch size during inference |
|
all_embs = [] |
|
for i in tqdm(np.arange(0, len(all_names), bs)): |
|
toks = tokenizer.batch_encode_plus(all_names[i:i+bs], |
|
padding="max_length", |
|
max_length=25, |
|
truncation=True, |
|
return_tensors="pt") |
|
toks_cuda = {} |
|
for k,v in toks.items(): |
|
toks_cuda[k] = v.cuda() |
|
cls_rep = model(**toks_cuda)[0][:,0,:] # use CLS representation as the embedding |
|
all_embs.append(cls_rep.cpu().detach().numpy()) |
|
|
|
all_embs = np.concatenate(all_embs, axis=0) |
|
``` |
|
|
|
For more details about training and eval, see SapBERT [github repo](https://github.com/cambridgeltl/sapbert). |
|
|
|
### Citation |
|
|
|
```bibtex |
|
@inproceedings{liu2021learning, |
|
title={Learning Domain-Specialised Representations for Cross-Lingual Biomedical Entity Linking}, |
|
author={Liu, Fangyu and Vuli{\'c}, Ivan and Korhonen, Anna and Collier, Nigel}, |
|
booktitle={Proceedings of ACL-IJCNLP 2021}, |
|
month = aug, |
|
year={2021} |
|
} |
|
``` |