metadata
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:353831
- loss:CosineSimilarityLoss
widget:
- source_sentence: A chef is preparing some food.
sentences:
- Five birds stand on the snow.
- A chef prepared a meal.
- There is no 'still' that is not relative to some other object.
- source_sentence: A woman is adding oil on fishes.
sentences:
- Large cruise ship floating on the water.
- >-
It refers to the maximum f-stop (which is defined as the ratio of focal
length to effective aperture diameter).
- The woman is cutting potatoes.
- source_sentence: The player shoots the winning points.
sentences:
- Minimum wage laws hurt the least skilled, least productive the most.
- The basketball player is about to score points for his team.
- Three televisions, on on the floor, the other two on a box.
- source_sentence: >-
Stars form in star-formation regions, which itself develop from molecular
clouds.
sentences:
- >-
Although I believe Searle is mistaken, I don't think you have found the
problem.
- >-
It may be possible for a solar system like ours to exist outside of a
galaxy.
- >-
A blond-haired child performing on the trumpet in front of a house while
his younger brother watches.
- source_sentence: >-
While Queen may refer to both Queen regent (sovereign) or Queen consort,
the King has always been the sovereign.
sentences:
- At first, I thought this is a bit of a tricky question.
- A man plays the guitar.
- >-
There is a very good reason not to refer to the Queen's spouse as "King"
- because they aren't the King.
datasets:
- sentence-transformers/stsb
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.7982244251277283
name: Pearson Cosine
- type: spearman_cosine
value: 0.8130492542348773
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.7554305375132837
name: Pearson Cosine
- type: spearman_cosine
value: 0.7644057551801444
name: Spearman Cosine
SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("cahya/last-sts")
# Run inference
sentences = [
'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
'A man plays the guitar.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-dev
andsts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts-dev | sts-test |
---|---|---|
pearson_cosine | 0.7982 | 0.7554 |
spearman_cosine | 0.813 | 0.7644 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 353,831 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 38.53 tokens
- max: 151 tokens
- min: 5 tokens
- mean: 38.78 tokens
- max: 145 tokens
- min: 0.0
- mean: 0.91
- max: 1.0
- Samples:
sentence1 sentence2 score A long-term researcher into diabetes, he achieved significant notability with his 1988 Banting Lecture (organized annually by the American Diabetes Association in memory of Frederick Banting).
A renowned expert on diabetes, he gained widespread acclaim for his 1988 Banting Lecture, which is presented annually by the American Diabetes Association to commemorate Frederick Banting.
0.926345705986023
investigators claim the british company was a cia cover.
russian investigators stated that the british company was a cia cover.
0.88
Albert Weber (21 November 1888, in Berlin – 17 September 1940) was a German amateur football (soccer) player who competed in the 1912 Summer Olympics.
Albert Weber (21 November 1888, in Berlin – 17 September 1940) was a German amateur footballer who participated in the 1912 Summer Olympics.
0.904914379119873
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
stsb
- Dataset: stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 15.44 tokens
- max: 44 tokens
- min: 6 tokens
- mean: 15.43 tokens
- max: 58 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score A man with a hard hat is dancing.
A man wearing a hard hat is dancing.
1.0
A young child is riding a horse.
A child is riding a horse.
0.95
A man is feeding a mouse to a snake.
The man is feeding a mouse to the snake.
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 10warmup_ratio
: 0.1bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|
0.0362 | 100 | 0.0019 | 0.1114 | 0.8115 | - |
0.0724 | 200 | 0.0021 | 0.0882 | 0.8177 | - |
0.1085 | 300 | 0.0015 | 0.0748 | 0.8125 | - |
0.1447 | 400 | 0.0012 | 0.0679 | 0.8086 | - |
0.1809 | 500 | 0.0012 | 0.0608 | 0.8069 | - |
0.2171 | 600 | 0.001 | 0.0596 | 0.7986 | - |
0.2533 | 700 | 0.0011 | 0.0547 | 0.7946 | - |
0.2894 | 800 | 0.0011 | 0.0492 | 0.7870 | - |
0.3256 | 900 | 0.0009 | 0.0522 | 0.7862 | - |
0.3618 | 1000 | 0.0008 | 0.0519 | 0.7880 | - |
0.3980 | 1100 | 0.0009 | 0.0529 | 0.7962 | - |
0.4342 | 1200 | 0.0008 | 0.0469 | 0.7954 | - |
0.4703 | 1300 | 0.0009 | 0.0506 | 0.7928 | - |
0.5065 | 1400 | 0.0009 | 0.0466 | 0.7873 | - |
0.5427 | 1500 | 0.001 | 0.0495 | 0.7999 | - |
0.5789 | 1600 | 0.0008 | 0.0506 | 0.7861 | - |
0.6151 | 1700 | 0.0008 | 0.0522 | 0.7873 | - |
0.6512 | 1800 | 0.0009 | 0.0582 | 0.7843 | - |
0.6874 | 1900 | 0.0009 | 0.0585 | 0.7888 | - |
0.7236 | 2000 | 0.001 | 0.0508 | 0.8040 | - |
0.7598 | 2100 | 0.001 | 0.0483 | 0.8018 | - |
0.7959 | 2200 | 0.0008 | 0.0520 | 0.7841 | - |
0.8321 | 2300 | 0.0009 | 0.0519 | 0.7896 | - |
0.8683 | 2400 | 0.001 | 0.0514 | 0.7906 | - |
0.9045 | 2500 | 0.0009 | 0.0521 | 0.7946 | - |
0.9407 | 2600 | 0.0009 | 0.0496 | 0.7920 | - |
0.9768 | 2700 | 0.001 | 0.0566 | 0.7956 | - |
1.0130 | 2800 | 0.0009 | 0.0511 | 0.8044 | - |
1.0492 | 2900 | 0.0009 | 0.0622 | 0.8197 | - |
1.0854 | 3000 | 0.001 | 0.0504 | 0.8113 | - |
1.1216 | 3100 | 0.001 | 0.0550 | 0.8005 | - |
1.1577 | 3200 | 0.001 | 0.0549 | 0.7821 | - |
1.1939 | 3300 | 0.0009 | 0.0578 | 0.7758 | - |
1.2301 | 3400 | 0.0009 | 0.0543 | 0.7860 | - |
1.2663 | 3500 | 0.0008 | 0.0575 | 0.7891 | - |
1.3025 | 3600 | 0.0009 | 0.0567 | 0.7995 | - |
1.3386 | 3700 | 0.001 | 0.0488 | 0.7985 | - |
1.3748 | 3800 | 0.0009 | 0.0514 | 0.7789 | - |
1.4110 | 3900 | 0.001 | 0.0584 | 0.7765 | - |
1.4472 | 4000 | 0.001 | 0.0554 | 0.7888 | - |
1.4834 | 4100 | 0.001 | 0.0659 | 0.7959 | - |
1.5195 | 4200 | 0.0009 | 0.0511 | 0.7816 | - |
1.5557 | 4300 | 0.0009 | 0.0555 | 0.7826 | - |
1.5919 | 4400 | 0.001 | 0.0525 | 0.7944 | - |
1.6281 | 4500 | 0.0009 | 0.0553 | 0.7941 | - |
1.6643 | 4600 | 0.001 | 0.0588 | 0.7984 | - |
1.7004 | 4700 | 0.001 | 0.0579 | 0.8004 | - |
1.7366 | 4800 | 0.0009 | 0.0540 | 0.7916 | - |
1.7728 | 4900 | 0.0009 | 0.0557 | 0.7963 | - |
1.8090 | 5000 | 0.0008 | 0.0536 | 0.8044 | - |
1.8452 | 5100 | 0.0009 | 0.0541 | 0.7870 | - |
1.8813 | 5200 | 0.0009 | 0.0594 | 0.7989 | - |
1.9175 | 5300 | 0.001 | 0.0558 | 0.8000 | - |
1.9537 | 5400 | 0.0009 | 0.0538 | 0.7905 | - |
1.9899 | 5500 | 0.0008 | 0.0555 | 0.7944 | - |
2.0260 | 5600 | 0.0009 | 0.0557 | 0.8127 | - |
2.0622 | 5700 | 0.0007 | 0.0542 | 0.8146 | - |
2.0984 | 5800 | 0.0008 | 0.0517 | 0.7990 | - |
2.1346 | 5900 | 0.0009 | 0.0500 | 0.8051 | - |
2.1708 | 6000 | 0.0009 | 0.0521 | 0.8019 | - |
2.2069 | 6100 | 0.0009 | 0.0511 | 0.8101 | - |
2.2431 | 6200 | 0.0008 | 0.0578 | 0.8087 | - |
2.2793 | 6300 | 0.0008 | 0.0585 | 0.8012 | - |
2.3155 | 6400 | 0.0008 | 0.0566 | 0.8083 | - |
2.3517 | 6500 | 0.0007 | 0.0535 | 0.8036 | - |
2.3878 | 6600 | 0.0008 | 0.0531 | 0.7988 | - |
2.4240 | 6700 | 0.0007 | 0.0574 | 0.8102 | - |
2.4602 | 6800 | 0.0007 | 0.0566 | 0.7944 | - |
2.4964 | 6900 | 0.0008 | 0.0528 | 0.8058 | - |
2.5326 | 7000 | 0.0007 | 0.0528 | 0.8056 | - |
2.5687 | 7100 | 0.0007 | 0.0506 | 0.8002 | - |
2.6049 | 7200 | 0.0007 | 0.0526 | 0.8038 | - |
2.6411 | 7300 | 0.0007 | 0.0554 | 0.8054 | - |
2.6773 | 7400 | 0.0007 | 0.0505 | 0.7928 | - |
2.7135 | 7500 | 0.0007 | 0.0505 | 0.8070 | - |
2.7496 | 7600 | 0.0007 | 0.0535 | 0.7977 | - |
2.7858 | 7700 | 0.0007 | 0.0536 | 0.8019 | - |
2.8220 | 7800 | 0.0006 | 0.0546 | 0.7989 | - |
2.8582 | 7900 | 0.0007 | 0.0543 | 0.8042 | - |
2.8944 | 8000 | 0.0007 | 0.0542 | 0.8105 | - |
2.9305 | 8100 | 0.0007 | 0.0541 | 0.8053 | - |
2.9667 | 8200 | 0.0007 | 0.0545 | 0.8135 | - |
3.0029 | 8300 | 0.0007 | 0.0598 | 0.8201 | - |
3.0391 | 8400 | 0.0008 | 0.0558 | 0.8050 | - |
3.0753 | 8500 | 0.0007 | 0.0510 | 0.7965 | - |
3.1114 | 8600 | 0.0006 | 0.0564 | 0.8042 | - |
3.1476 | 8700 | 0.0006 | 0.0559 | 0.7932 | - |
3.1838 | 8800 | 0.0006 | 0.0529 | 0.8028 | - |
3.2200 | 8900 | 0.0006 | 0.0542 | 0.8142 | - |
3.2562 | 9000 | 0.0006 | 0.0532 | 0.8055 | - |
3.2923 | 9100 | 0.0006 | 0.0506 | 0.7930 | - |
3.3285 | 9200 | 0.0007 | 0.0542 | 0.7927 | - |
3.3647 | 9300 | 0.0006 | 0.0523 | 0.8033 | - |
3.4009 | 9400 | 0.0006 | 0.0530 | 0.8079 | - |
3.4370 | 9500 | 0.0006 | 0.0544 | 0.7977 | - |
3.4732 | 9600 | 0.0005 | 0.0515 | 0.8019 | - |
3.5094 | 9700 | 0.0006 | 0.0481 | 0.8037 | - |
3.5456 | 9800 | 0.0005 | 0.0557 | 0.8007 | - |
3.5818 | 9900 | 0.0006 | 0.0495 | 0.8087 | - |
3.6179 | 10000 | 0.0006 | 0.0555 | 0.7991 | - |
3.6541 | 10100 | 0.0005 | 0.0560 | 0.7973 | - |
3.6903 | 10200 | 0.0007 | 0.0581 | 0.7945 | - |
3.7265 | 10300 | 0.0006 | 0.0546 | 0.8098 | - |
3.7627 | 10400 | 0.0006 | 0.0539 | 0.8074 | - |
3.7988 | 10500 | 0.0005 | 0.0501 | 0.8051 | - |
3.8350 | 10600 | 0.0005 | 0.0531 | 0.8032 | - |
3.8712 | 10700 | 0.0005 | 0.0502 | 0.8077 | - |
3.9074 | 10800 | 0.0006 | 0.0537 | 0.8131 | - |
3.9436 | 10900 | 0.0005 | 0.0510 | 0.8115 | - |
3.9797 | 11000 | 0.0006 | 0.0525 | 0.8173 | - |
4.0159 | 11100 | 0.0005 | 0.0513 | 0.8106 | - |
4.0521 | 11200 | 0.0006 | 0.0594 | 0.8061 | - |
4.0883 | 11300 | 0.0005 | 0.0514 | 0.8150 | - |
4.1245 | 11400 | 0.0005 | 0.0537 | 0.8168 | - |
4.1606 | 11500 | 0.0005 | 0.0571 | 0.8176 | - |
4.1968 | 11600 | 0.0005 | 0.0546 | 0.8159 | - |
4.2330 | 11700 | 0.0005 | 0.0496 | 0.8115 | - |
4.2692 | 11800 | 0.0005 | 0.0526 | 0.8072 | - |
4.3054 | 11900 | 0.0005 | 0.0512 | 0.8081 | - |
4.3415 | 12000 | 0.0005 | 0.0517 | 0.8025 | - |
4.3777 | 12100 | 0.0005 | 0.0533 | 0.8128 | - |
4.4139 | 12200 | 0.0005 | 0.0501 | 0.8121 | - |
4.4501 | 12300 | 0.0005 | 0.0507 | 0.8079 | - |
4.4863 | 12400 | 0.0005 | 0.0501 | 0.8070 | - |
4.5224 | 12500 | 0.0004 | 0.0537 | 0.8019 | - |
4.5586 | 12600 | 0.0004 | 0.0541 | 0.8005 | - |
4.5948 | 12700 | 0.0005 | 0.0525 | 0.8117 | - |
4.6310 | 12800 | 0.0004 | 0.0523 | 0.8070 | - |
4.6671 | 12900 | 0.0005 | 0.0526 | 0.8099 | - |
4.7033 | 13000 | 0.0004 | 0.0518 | 0.8166 | - |
4.7395 | 13100 | 0.0004 | 0.0547 | 0.8129 | - |
4.7757 | 13200 | 0.0005 | 0.0523 | 0.8130 | - |
4.8119 | 13300 | 0.0004 | 0.0504 | 0.8129 | - |
4.8480 | 13400 | 0.0005 | 0.0539 | 0.8113 | - |
4.8842 | 13500 | 0.0004 | 0.0523 | 0.8169 | - |
4.9204 | 13600 | 0.0005 | 0.0521 | 0.8164 | - |
4.9566 | 13700 | 0.0004 | 0.0575 | 0.8115 | - |
4.9928 | 13800 | 0.0004 | 0.0538 | 0.8186 | - |
5.0289 | 13900 | 0.0004 | 0.0530 | 0.8095 | - |
5.0651 | 14000 | 0.0003 | 0.0537 | 0.8162 | - |
5.1013 | 14100 | 0.0004 | 0.0560 | 0.8112 | - |
5.1375 | 14200 | 0.0004 | 0.0528 | 0.8125 | - |
5.1737 | 14300 | 0.0004 | 0.0533 | 0.8137 | - |
5.2098 | 14400 | 0.0003 | 0.0537 | 0.8198 | - |
5.2460 | 14500 | 0.0004 | 0.0530 | 0.8102 | - |
5.2822 | 14600 | 0.0004 | 0.0562 | 0.8099 | - |
5.3184 | 14700 | 0.0004 | 0.0522 | 0.8084 | - |
5.3546 | 14800 | 0.0004 | 0.0515 | 0.8128 | - |
5.3907 | 14900 | 0.0004 | 0.0555 | 0.8107 | - |
5.4269 | 15000 | 0.0004 | 0.0533 | 0.8113 | - |
5.4631 | 15100 | 0.0003 | 0.0538 | 0.8135 | - |
5.4993 | 15200 | 0.0004 | 0.0552 | 0.8139 | - |
5.5355 | 15300 | 0.0003 | 0.0513 | 0.8102 | - |
5.5716 | 15400 | 0.0004 | 0.0542 | 0.8108 | - |
5.6078 | 15500 | 0.0003 | 0.0541 | 0.8041 | - |
5.6440 | 15600 | 0.0004 | 0.0512 | 0.8074 | - |
5.6802 | 15700 | 0.0003 | 0.0553 | 0.8100 | - |
5.7164 | 15800 | 0.0003 | 0.0539 | 0.8088 | - |
5.7525 | 15900 | 0.0004 | 0.0527 | 0.8094 | - |
5.7887 | 16000 | 0.0004 | 0.0524 | 0.8080 | - |
5.8249 | 16100 | 0.0003 | 0.0525 | 0.8112 | - |
5.8611 | 16200 | 0.0003 | 0.0537 | 0.8109 | - |
5.8973 | 16300 | 0.0003 | 0.0539 | 0.8129 | - |
5.9334 | 16400 | 0.0003 | 0.0543 | 0.8052 | - |
5.9696 | 16500 | 0.0003 | 0.0544 | 0.8093 | - |
6.0058 | 16600 | 0.0004 | 0.0532 | 0.8109 | - |
6.0420 | 16700 | 0.0002 | 0.0558 | 0.8108 | - |
6.0781 | 16800 | 0.0002 | 0.0529 | 0.8089 | - |
6.1143 | 16900 | 0.0003 | 0.0539 | 0.8074 | - |
6.1505 | 17000 | 0.0003 | 0.0534 | 0.8118 | - |
6.1867 | 17100 | 0.0003 | 0.0539 | 0.8048 | - |
6.2229 | 17200 | 0.0003 | 0.0537 | 0.8049 | - |
6.2590 | 17300 | 0.0003 | 0.0553 | 0.8102 | - |
6.2952 | 17400 | 0.0002 | 0.0533 | 0.8053 | - |
6.3314 | 17500 | 0.0003 | 0.0550 | 0.8071 | - |
6.3676 | 17600 | 0.0002 | 0.0530 | 0.8128 | - |
6.4038 | 17700 | 0.0003 | 0.0547 | 0.8159 | - |
6.4399 | 17800 | 0.0002 | 0.0539 | 0.8120 | - |
6.4761 | 17900 | 0.0003 | 0.0540 | 0.8107 | - |
6.5123 | 18000 | 0.0003 | 0.0535 | 0.8069 | - |
6.5485 | 18100 | 0.0003 | 0.0541 | 0.8129 | - |
6.5847 | 18200 | 0.0003 | 0.0522 | 0.8132 | - |
6.6208 | 18300 | 0.0002 | 0.0539 | 0.8135 | - |
6.6570 | 18400 | 0.0002 | 0.0542 | 0.8142 | - |
6.6932 | 18500 | 0.0003 | 0.0529 | 0.8101 | - |
6.7294 | 18600 | 0.0003 | 0.0533 | 0.8073 | - |
6.7656 | 18700 | 0.0003 | 0.0525 | 0.8095 | - |
6.8017 | 18800 | 0.0003 | 0.0534 | 0.8089 | - |
6.8379 | 18900 | 0.0002 | 0.0519 | 0.8134 | - |
6.8741 | 19000 | 0.0002 | 0.0536 | 0.8141 | - |
6.9103 | 19100 | 0.0002 | 0.0535 | 0.8115 | - |
6.9465 | 19200 | 0.0002 | 0.0519 | 0.8107 | - |
6.9826 | 19300 | 0.0002 | 0.0546 | 0.8093 | - |
7.0188 | 19400 | 0.0002 | 0.0532 | 0.8112 | - |
7.0550 | 19500 | 0.0002 | 0.0526 | 0.8145 | - |
7.0912 | 19600 | 0.0002 | 0.0529 | 0.8111 | - |
7.1274 | 19700 | 0.0002 | 0.0540 | 0.8090 | - |
7.1635 | 19800 | 0.0002 | 0.0525 | 0.8116 | - |
7.1997 | 19900 | 0.0002 | 0.0534 | 0.8115 | - |
7.2359 | 20000 | 0.0002 | 0.0526 | 0.8123 | - |
7.2721 | 20100 | 0.0002 | 0.0524 | 0.8143 | - |
7.3082 | 20200 | 0.0002 | 0.0526 | 0.8059 | - |
7.3444 | 20300 | 0.0002 | 0.0535 | 0.8091 | - |
7.3806 | 20400 | 0.0002 | 0.0532 | 0.8094 | - |
7.4168 | 20500 | 0.0002 | 0.0529 | 0.8108 | - |
7.4530 | 20600 | 0.0002 | 0.0542 | 0.8108 | - |
7.4891 | 20700 | 0.0002 | 0.0525 | 0.8102 | - |
7.5253 | 20800 | 0.0002 | 0.0541 | 0.8106 | - |
7.5615 | 20900 | 0.0002 | 0.0538 | 0.8095 | - |
7.5977 | 21000 | 0.0003 | 0.0523 | 0.8136 | - |
7.6339 | 21100 | 0.0002 | 0.0544 | 0.8108 | - |
7.6700 | 21200 | 0.0002 | 0.0525 | 0.8090 | - |
7.7062 | 21300 | 0.0002 | 0.0528 | 0.8108 | - |
7.7424 | 21400 | 0.0002 | 0.0531 | 0.8115 | - |
7.7786 | 21500 | 0.0002 | 0.0541 | 0.8107 | - |
7.8148 | 21600 | 0.0001 | 0.0525 | 0.8117 | - |
7.8509 | 21700 | 0.0002 | 0.0534 | 0.8115 | - |
7.8871 | 21800 | 0.0002 | 0.0541 | 0.8105 | - |
7.9233 | 21900 | 0.0002 | 0.0538 | 0.8094 | - |
7.9595 | 22000 | 0.0002 | 0.0530 | 0.8106 | - |
7.9957 | 22100 | 0.0002 | 0.0527 | 0.8104 | - |
8.0318 | 22200 | 0.0001 | 0.0534 | 0.8098 | - |
8.0680 | 22300 | 0.0002 | 0.0537 | 0.8090 | - |
8.1042 | 22400 | 0.0001 | 0.0533 | 0.8103 | - |
8.1404 | 22500 | 0.0002 | 0.0528 | 0.8099 | - |
8.1766 | 22600 | 0.0001 | 0.0531 | 0.8106 | - |
8.2127 | 22700 | 0.0001 | 0.0534 | 0.8116 | - |
8.2489 | 22800 | 0.0001 | 0.0538 | 0.8102 | - |
8.2851 | 22900 | 0.0001 | 0.0530 | 0.8108 | - |
8.3213 | 23000 | 0.0002 | 0.0529 | 0.8112 | - |
8.3575 | 23100 | 0.0001 | 0.0533 | 0.8099 | - |
8.3936 | 23200 | 0.0001 | 0.0534 | 0.8107 | - |
8.4298 | 23300 | 0.0002 | 0.0535 | 0.8110 | - |
8.4660 | 23400 | 0.0001 | 0.0543 | 0.8108 | - |
8.5022 | 23500 | 0.0001 | 0.0530 | 0.8119 | - |
8.5384 | 23600 | 0.0001 | 0.0530 | 0.8132 | - |
8.5745 | 23700 | 0.0001 | 0.0531 | 0.8128 | - |
8.6107 | 23800 | 0.0002 | 0.0532 | 0.8119 | - |
8.6469 | 23900 | 0.0002 | 0.0531 | 0.8120 | - |
8.6831 | 24000 | 0.0001 | 0.0531 | 0.8121 | - |
8.7192 | 24100 | 0.0001 | 0.0525 | 0.8134 | - |
8.7554 | 24200 | 0.0002 | 0.0524 | 0.8133 | - |
8.7916 | 24300 | 0.0001 | 0.0535 | 0.8141 | - |
8.8278 | 24400 | 0.0002 | 0.0529 | 0.8118 | - |
8.8640 | 24500 | 0.0001 | 0.0529 | 0.8115 | - |
8.9001 | 24600 | 0.0001 | 0.0528 | 0.8127 | - |
8.9363 | 24700 | 0.0002 | 0.0527 | 0.8111 | - |
8.9725 | 24800 | 0.0001 | 0.0536 | 0.8114 | - |
9.0087 | 24900 | 0.0001 | 0.0531 | 0.8124 | - |
9.0449 | 25000 | 0.0001 | 0.0532 | 0.8123 | - |
9.0810 | 25100 | 0.0001 | 0.0534 | 0.8130 | - |
9.1172 | 25200 | 0.0001 | 0.0533 | 0.8121 | - |
9.1534 | 25300 | 0.0002 | 0.0534 | 0.8119 | - |
9.1896 | 25400 | 0.0001 | 0.0532 | 0.8118 | - |
9.2258 | 25500 | 0.0001 | 0.0532 | 0.8112 | - |
9.2619 | 25600 | 0.0001 | 0.0532 | 0.8121 | - |
9.2981 | 25700 | 0.0002 | 0.0537 | 0.8120 | - |
9.3343 | 25800 | 0.0001 | 0.0535 | 0.8127 | - |
9.3705 | 25900 | 0.0001 | 0.0529 | 0.8133 | - |
9.4067 | 26000 | 0.0001 | 0.0529 | 0.8138 | - |
9.4428 | 26100 | 0.0001 | 0.0534 | 0.8131 | - |
9.4790 | 26200 | 0.0001 | 0.0529 | 0.8137 | - |
9.5152 | 26300 | 0.0002 | 0.0529 | 0.8135 | - |
9.5514 | 26400 | 0.0001 | 0.0528 | 0.8129 | - |
9.5876 | 26500 | 0.0001 | 0.0530 | 0.8124 | - |
9.6237 | 26600 | 0.0001 | 0.0529 | 0.8132 | - |
9.6599 | 26700 | 0.0001 | 0.0530 | 0.8128 | - |
9.6961 | 26800 | 0.0001 | 0.0530 | 0.8132 | - |
9.7323 | 26900 | 0.0001 | 0.0529 | 0.8129 | - |
9.7685 | 27000 | 0.0002 | 0.0528 | 0.8131 | - |
9.8046 | 27100 | 0.0001 | 0.0529 | 0.8131 | - |
9.8408 | 27200 | 0.0002 | 0.0531 | 0.8128 | - |
9.8770 | 27300 | 0.0001 | 0.0532 | 0.8130 | - |
9.9132 | 27400 | 0.0001 | 0.0531 | 0.8129 | - |
9.9493 | 27500 | 0.0001 | 0.0531 | 0.8129 | - |
9.9855 | 27600 | 0.0001 | 0.0531 | 0.8130 | - |
-1 | -1 | - | - | - | 0.7644 |
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu124
- Accelerate: 0.34.2
- Datasets: 2.19.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}