06-12-14-46
This model is a fine-tuned version of dbmdz/bert-base-turkish-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0870
- Hate Precision: 1.0
- Hate Recall: 0.6923
- Hate F1: 0.8182
- Sexual Precision: 0.0
- Sexual Recall: 0.0
- Sexual F1: 0.0
- Threat Precision: 0.0
- Threat Recall: 0.0
- Threat F1: 0.0
- Illicit Precision: 0.0
- Illicit Recall: 0.0
- Illicit F1: 0.0
- Bad Habits Precision: 0.0
- Bad Habits Recall: 0.0
- Bad Habits F1: 0.0
- Self Harm Precision: 0.0
- Self Harm Recall: 0.0
- Self Harm F1: 0.0
- Neutral Precision: 0.0
- Neutral Recall: 0.0
- Neutral F1: 0.0
- Macro Precision: 0.1429
- Macro Recall: 0.0989
- Macro F1: 0.1169
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Hate Precision | Hate Recall | Hate F1 | Sexual Precision | Sexual Recall | Sexual F1 | Threat Precision | Threat Recall | Threat F1 | Illicit Precision | Illicit Recall | Illicit F1 | Bad Habits Precision | Bad Habits Recall | Bad Habits F1 | Self Harm Precision | Self Harm Recall | Self Harm F1 | Neutral Precision | Neutral Recall | Neutral F1 | Macro Precision | Macro Recall | Macro F1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.563 | 0.8333 | 10 | 0.4105 | 0.375 | 0.2308 | 0.2857 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0536 | 0.0330 | 0.0408 |
0.3308 | 1.6667 | 20 | 0.2523 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.2122 | 2.5 | 30 | 0.1615 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.178 | 3.3333 | 40 | 0.1422 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.1487 | 4.1667 | 50 | 0.1318 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.1676 | 5.0 | 60 | 0.1248 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.1434 | 5.8333 | 70 | 0.1204 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.1341 | 6.6667 | 80 | 0.1157 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.1451 | 7.5 | 90 | 0.1146 | 0.6429 | 0.6923 | 0.6667 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0918 | 0.0989 | 0.0952 |
0.1052 | 8.3333 | 100 | 0.1055 | 0.8 | 0.6154 | 0.6957 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1143 | 0.0879 | 0.0994 |
0.1167 | 9.1667 | 110 | 0.1078 | 0.6429 | 0.6923 | 0.6667 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0918 | 0.0989 | 0.0952 |
0.0813 | 10.0 | 120 | 0.0964 | 0.8182 | 0.6923 | 0.75 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1169 | 0.0989 | 0.1071 |
0.0799 | 10.8333 | 130 | 0.0995 | 0.75 | 0.6923 | 0.72 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1071 | 0.0989 | 0.1029 |
0.0717 | 11.6667 | 140 | 0.0933 | 0.8182 | 0.6923 | 0.75 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1169 | 0.0989 | 0.1071 |
0.0639 | 12.5 | 150 | 0.0939 | 0.9 | 0.6923 | 0.7826 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1286 | 0.0989 | 0.1118 |
0.0612 | 13.3333 | 160 | 0.0911 | 0.9 | 0.6923 | 0.7826 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1286 | 0.0989 | 0.1118 |
0.0571 | 14.1667 | 170 | 0.0920 | 0.9 | 0.6923 | 0.7826 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1286 | 0.0989 | 0.1118 |
0.0492 | 15.0 | 180 | 0.0904 | 1.0 | 0.6923 | 0.8182 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0989 | 0.1169 |
0.05 | 15.8333 | 190 | 0.0906 | 0.9 | 0.6923 | 0.7826 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1286 | 0.0989 | 0.1118 |
0.0481 | 16.6667 | 200 | 0.0876 | 1.0 | 0.6923 | 0.8182 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0989 | 0.1169 |
0.0327 | 17.5 | 210 | 0.0881 | 0.9 | 0.6923 | 0.7826 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1286 | 0.0989 | 0.1118 |
0.0514 | 18.3333 | 220 | 0.0918 | 0.9 | 0.6923 | 0.7826 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1286 | 0.0989 | 0.1118 |
0.0397 | 19.1667 | 230 | 0.0877 | 1.0 | 0.6923 | 0.8182 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0989 | 0.1169 |
0.0429 | 20.0 | 240 | 0.0895 | 0.9 | 0.6923 | 0.7826 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1286 | 0.0989 | 0.1118 |
0.0391 | 20.8333 | 250 | 0.0876 | 1.0 | 0.6923 | 0.8182 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0989 | 0.1169 |
0.0351 | 21.6667 | 260 | 0.0874 | 1.0 | 0.6923 | 0.8182 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0989 | 0.1169 |
0.0325 | 22.5 | 270 | 0.0879 | 1.0 | 0.6923 | 0.8182 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0989 | 0.1169 |
0.0368 | 23.3333 | 280 | 0.0895 | 0.9 | 0.6923 | 0.7826 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1286 | 0.0989 | 0.1118 |
0.0305 | 24.1667 | 290 | 0.0869 | 1.0 | 0.6923 | 0.8182 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0989 | 0.1169 |
0.0335 | 25.0 | 300 | 0.0875 | 1.0 | 0.6923 | 0.8182 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0989 | 0.1169 |
0.0328 | 25.8333 | 310 | 0.0879 | 1.0 | 0.6923 | 0.8182 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0989 | 0.1169 |
0.0352 | 26.6667 | 320 | 0.0886 | 1.0 | 0.6923 | 0.8182 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0989 | 0.1169 |
0.0314 | 27.5 | 330 | 0.0871 | 1.0 | 0.6923 | 0.8182 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0989 | 0.1169 |
0.0337 | 28.3333 | 340 | 0.0869 | 1.0 | 0.6923 | 0.8182 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0989 | 0.1169 |
0.0314 | 29.1667 | 350 | 0.0870 | 1.0 | 0.6923 | 0.8182 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0989 | 0.1169 |
0.0278 | 30.0 | 360 | 0.0870 | 1.0 | 0.6923 | 0.8182 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1429 | 0.0989 | 0.1169 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for cahmetcan/06-12-14-46
Base model
dbmdz/bert-base-turkish-cased