|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/detr-resnet-50 |
|
tags: |
|
- image-regression |
|
- human-movement |
|
- vision |
|
- generated_from_trainer |
|
model-index: |
|
- name: target_hold_hands |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# target_hold_hands |
|
|
|
This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the c14kevincardenas/beta_caller_284_target_hold_hands dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6006 |
|
- Iou: 0.0000 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 2014 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 250 |
|
- num_epochs: 20.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Iou | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 0.957 | 1.0 | 52 | 0.8557 | 0.0 | |
|
| 0.7261 | 2.0 | 104 | 0.6803 | 0.0000 | |
|
| 0.6689 | 3.0 | 156 | 0.6545 | 0.0000 | |
|
| 0.7126 | 4.0 | 208 | 0.7020 | 0.0000 | |
|
| 0.6688 | 5.0 | 260 | 0.6712 | 0.0000 | |
|
| 0.7126 | 6.0 | 312 | 0.6633 | 0.0000 | |
|
| 0.6633 | 7.0 | 364 | 0.6083 | 0.0000 | |
|
| 0.6113 | 8.0 | 416 | 0.6061 | 0.0000 | |
|
| 0.6101 | 9.0 | 468 | 0.6027 | 0.0000 | |
|
| 0.6028 | 10.0 | 520 | 0.6007 | 0.0 | |
|
| 0.5983 | 11.0 | 572 | 0.6019 | 0.0000 | |
|
| 0.6014 | 12.0 | 624 | 0.6006 | 0.0000 | |
|
| 0.5968 | 13.0 | 676 | 0.6014 | 0.0000 | |
|
| 0.5932 | 14.0 | 728 | 0.6021 | 0.0000 | |
|
| 0.592 | 15.0 | 780 | 0.6047 | 0.0 | |
|
| 0.5935 | 16.0 | 832 | 0.6020 | 0.0000 | |
|
| 0.5873 | 17.0 | 884 | 0.6026 | 0.0000 | |
|
| 0.5853 | 18.0 | 936 | 0.6115 | 0.0000 | |
|
| 0.5835 | 19.0 | 988 | 0.6087 | 0.0000 | |
|
| 0.5868 | 20.0 | 1040 | 0.6076 | 0.0000 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.5.0+cu124 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.1 |
|
|