base_model: google/gemma-2-2b-it
license: other
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: longcot_pt_GEMMA_ZD_10_23_1
results: []
OpenLongCoT-Base-Gemma2-2B-RK3588-1.1.1
!!! THIS MODEL HAS BEEN MODIFIED FROM THE ORIGINAL !!!
This version of OpenLongCoT-Base-Gemma2-2B has been converted to run on the RK3588 NPU using ['w8a8'] quantization. Only w8a8 quantization appears to work with Gemma 2 models. Other types throw error:
E RKNN: [00:14:18.994] failed to allocate handle, ret: -1, errno: 14, errstr: Bad address
E RKNN: [00:14:18.994] failed to malloc npu memory, size: 232128512, flags: 0x2
E RKNN: [00:14:18.994] load model file error!
rknn_init fail! ret=-1
This model has been optimized with the following LoRA:
Compatible with RKLLM version: 1.1.1
Useful links:
Pretty much anything by these folks: marty1885 and happyme531
Converted using https://github.com/c0zaut/ez-er-rkllm-toolkit
Original Model Card for base model, OpenLongCoT-Base-Gemma2-2B, below:
Please Please cite me if this dataset is helpful for you!🥰
@article{zhang2024llama,
title={LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning},
author={Zhang, Di and Wu, Jianbo and Lei, Jingdi and Che, Tong and Li, Jiatong and Xie, Tong and Huang, Xiaoshui and Zhang, Shufei and Pavone, Marco and Li, Yuqiang and others},
journal={arXiv preprint arXiv:2410.02884},
year={2024}
}
@article{zhang2024accessing,
title={Accessing GPT-4 level Mathematical Olympiad Solutions via Monte Carlo Tree Self-refine with LLaMa-3 8B},
author={Zhang, Di and Li, Jiatong and Huang, Xiaoshui and Zhou, Dongzhan and Li, Yuqiang and Ouyang, Wanli},
journal={arXiv preprint arXiv:2406.07394},
year={2024}
}
longcot_pt_GEMMA_ZD_10_23_1
This model is a fine-tuned version of google/gemma-2-2b-it on the OpenLongCoT dataset.
This model can read and output o1-like LongCoT which targeting work with LLaMA-O1 runtime frameworks.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1.0
Training results
Framework versions
- Transformers 4.44.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.19.1