🇹🇷 RoBERTaTurk
Model description
This is a Turkish RoBERTa base model pretrained on Turkish Wikipedia, Turkish OSCAR, and some news websites.
The final training corpus has a size of 38 GB and 329.720.508 sentences.
Thanks to Turkcell we could train the model on Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz 256GB RAM 2 x GV100GL [Tesla V100 PCIe 32GB] GPU for 2.5M steps.
Usage
Load transformers library with:
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("burakaytan/roberta-base-turkish-uncased")
model = AutoModelForMaskedLM.from_pretrained("burakaytan/roberta-base-turkish-uncased")
Fill Mask Usage
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model="burakaytan/roberta-base-turkish-uncased",
tokenizer="burakaytan/roberta-base-turkish-uncased"
)
fill_mask("iki ülke arasında <mask> başladı")
[{'sequence': 'iki ülke arasında savaş başladı',
'score': 0.3013845384120941,
'token': 1359,
'token_str': ' savaş'},
{'sequence': 'iki ülke arasında müzakereler başladı',
'score': 0.1058429479598999,
'token': 30439,
'token_str': ' müzakereler'},
{'sequence': 'iki ülke arasında görüşmeler başladı',
'score': 0.07718811184167862,
'token': 4916,
'token_str': ' görüşmeler'},
{'sequence': 'iki ülke arasında kriz başladı',
'score': 0.07174749672412872,
'token': 3908,
'token_str': ' kriz'},
{'sequence': 'iki ülke arasında çatışmalar başladı',
'score': 0.05678590387105942,
'token': 19346,
'token_str': ' çatışmalar'}]
Citation and Related Information
To cite this model:
@inproceedings{aytan2022comparison,
title={Comparison of Transformer-Based Models Trained in Turkish and Different Languages on Turkish Natural Language Processing Problems},
author={Aytan, Burak and Sakar, C Okan},
booktitle={2022 30th Signal Processing and Communications Applications Conference (SIU)},
pages={1--4},
year={2022},
organization={IEEE}
}
- Downloads last month
- 64
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.