bullerwins's picture
Upload folder using huggingface_hub
eb00867 verified
raw
history blame
12.2 kB
/*
* Copyright 1993-2012 NVIDIA Corporation. All rights reserved.
*
* NOTICE TO LICENSEE:
*
* This source code and/or documentation ("Licensed Deliverables") are
* subject to NVIDIA intellectual property rights under U.S. and
* international Copyright laws.
*
* These Licensed Deliverables contained herein is PROPRIETARY and
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
* conditions of a form of NVIDIA software license agreement by and
* between NVIDIA and Licensee ("License Agreement") or electronically
* accepted by Licensee. Notwithstanding any terms or conditions to
* the contrary in the License Agreement, reproduction or disclosure
* of the Licensed Deliverables to any third party without the express
* written consent of NVIDIA is prohibited.
*
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THESE LICENSED DELIVERABLES.
*
* U.S. Government End Users. These Licensed Deliverables are a
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
* 1995), consisting of "commercial computer software" and "commercial
* computer software documentation" as such terms are used in 48
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
* U.S. Government End Users acquire the Licensed Deliverables with
* only those rights set forth herein.
*
* Any use of the Licensed Deliverables in individual and commercial
* software must include, in the user documentation and internal
* comments to the code, the above Disclaimer and U.S. Government End
* Users Notice.
*/
#if !defined(CU_COMPLEX_H_)
#define CU_COMPLEX_H_
#if !defined(__CUDACC_RTC__)
#if defined(__GNUC__)
#if defined(__clang__) || (!defined(__PGIC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2)))
#pragma GCC diagnostic ignored "-Wunused-function"
#endif
#endif
#endif
/* When trying to include C header file in C++ Code extern "C" is required
* But the Standard QNX headers already have ifdef extern in them when compiling C++ Code
* extern "C" cannot be nested
* Hence keep the header out of extern "C" block
*/
#if !defined(__CUDACC__)
#include <math.h> /* import fabsf, sqrt */
#endif /* !defined(__CUDACC__) */
#if defined(__cplusplus)
extern "C" {
#endif /* __cplusplus */
#include "vector_types.h"
typedef float2 cuFloatComplex;
__host__ __device__ static __inline__ float cuCrealf (cuFloatComplex x)
{
return x.x;
}
__host__ __device__ static __inline__ float cuCimagf (cuFloatComplex x)
{
return x.y;
}
__host__ __device__ static __inline__ cuFloatComplex make_cuFloatComplex
(float r, float i)
{
cuFloatComplex res;
res.x = r;
res.y = i;
return res;
}
__host__ __device__ static __inline__ cuFloatComplex cuConjf (cuFloatComplex x)
{
return make_cuFloatComplex (cuCrealf(x), -cuCimagf(x));
}
__host__ __device__ static __inline__ cuFloatComplex cuCaddf (cuFloatComplex x,
cuFloatComplex y)
{
return make_cuFloatComplex (cuCrealf(x) + cuCrealf(y),
cuCimagf(x) + cuCimagf(y));
}
__host__ __device__ static __inline__ cuFloatComplex cuCsubf (cuFloatComplex x,
cuFloatComplex y)
{
return make_cuFloatComplex (cuCrealf(x) - cuCrealf(y),
cuCimagf(x) - cuCimagf(y));
}
/* This implementation could suffer from intermediate overflow even though
* the final result would be in range. However, various implementations do
* not guard against this (presumably to avoid losing performance), so we
* don't do it either to stay competitive.
*/
__host__ __device__ static __inline__ cuFloatComplex cuCmulf (cuFloatComplex x,
cuFloatComplex y)
{
cuFloatComplex prod;
prod = make_cuFloatComplex ((cuCrealf(x) * cuCrealf(y)) -
(cuCimagf(x) * cuCimagf(y)),
(cuCrealf(x) * cuCimagf(y)) +
(cuCimagf(x) * cuCrealf(y)));
return prod;
}
/* This implementation guards against intermediate underflow and overflow
* by scaling. Such guarded implementations are usually the default for
* complex library implementations, with some also offering an unguarded,
* faster version.
*/
__host__ __device__ static __inline__ cuFloatComplex cuCdivf (cuFloatComplex x,
cuFloatComplex y)
{
cuFloatComplex quot;
float s = fabsf(cuCrealf(y)) + fabsf(cuCimagf(y));
float oos = 1.0f / s;
float ars = cuCrealf(x) * oos;
float ais = cuCimagf(x) * oos;
float brs = cuCrealf(y) * oos;
float bis = cuCimagf(y) * oos;
s = (brs * brs) + (bis * bis);
oos = 1.0f / s;
quot = make_cuFloatComplex (((ars * brs) + (ais * bis)) * oos,
((ais * brs) - (ars * bis)) * oos);
return quot;
}
/*
* We would like to call hypotf(), but it's not available on all platforms.
* This discrete implementation guards against intermediate underflow and
* overflow by scaling. Otherwise we would lose half the exponent range.
* There are various ways of doing guarded computation. For now chose the
* simplest and fastest solution, however this may suffer from inaccuracies
* if sqrt and division are not IEEE compliant.
*/
__host__ __device__ static __inline__ float cuCabsf (cuFloatComplex x)
{
float a = cuCrealf(x);
float b = cuCimagf(x);
float v, w, t;
a = fabsf(a);
b = fabsf(b);
if (a > b) {
v = a;
w = b;
} else {
v = b;
w = a;
}
t = w / v;
t = 1.0f + t * t;
t = v * sqrtf(t);
if ((v == 0.0f) || (v > 3.402823466e38f) || (w > 3.402823466e38f)) {
t = v + w;
}
return t;
}
/* Double precision */
typedef double2 cuDoubleComplex;
__host__ __device__ static __inline__ double cuCreal (cuDoubleComplex x)
{
return x.x;
}
__host__ __device__ static __inline__ double cuCimag (cuDoubleComplex x)
{
return x.y;
}
__host__ __device__ static __inline__ cuDoubleComplex make_cuDoubleComplex
(double r, double i)
{
cuDoubleComplex res;
res.x = r;
res.y = i;
return res;
}
__host__ __device__ static __inline__ cuDoubleComplex cuConj(cuDoubleComplex x)
{
return make_cuDoubleComplex (cuCreal(x), -cuCimag(x));
}
__host__ __device__ static __inline__ cuDoubleComplex cuCadd(cuDoubleComplex x,
cuDoubleComplex y)
{
return make_cuDoubleComplex (cuCreal(x) + cuCreal(y),
cuCimag(x) + cuCimag(y));
}
__host__ __device__ static __inline__ cuDoubleComplex cuCsub(cuDoubleComplex x,
cuDoubleComplex y)
{
return make_cuDoubleComplex (cuCreal(x) - cuCreal(y),
cuCimag(x) - cuCimag(y));
}
/* This implementation could suffer from intermediate overflow even though
* the final result would be in range. However, various implementations do
* not guard against this (presumably to avoid losing performance), so we
* don't do it either to stay competitive.
*/
__host__ __device__ static __inline__ cuDoubleComplex cuCmul(cuDoubleComplex x,
cuDoubleComplex y)
{
cuDoubleComplex prod;
prod = make_cuDoubleComplex ((cuCreal(x) * cuCreal(y)) -
(cuCimag(x) * cuCimag(y)),
(cuCreal(x) * cuCimag(y)) +
(cuCimag(x) * cuCreal(y)));
return prod;
}
/* This implementation guards against intermediate underflow and overflow
* by scaling. Such guarded implementations are usually the default for
* complex library implementations, with some also offering an unguarded,
* faster version.
*/
__host__ __device__ static __inline__ cuDoubleComplex cuCdiv(cuDoubleComplex x,
cuDoubleComplex y)
{
cuDoubleComplex quot;
double s = (fabs(cuCreal(y))) + (fabs(cuCimag(y)));
double oos = 1.0 / s;
double ars = cuCreal(x) * oos;
double ais = cuCimag(x) * oos;
double brs = cuCreal(y) * oos;
double bis = cuCimag(y) * oos;
s = (brs * brs) + (bis * bis);
oos = 1.0 / s;
quot = make_cuDoubleComplex (((ars * brs) + (ais * bis)) * oos,
((ais * brs) - (ars * bis)) * oos);
return quot;
}
/* This implementation guards against intermediate underflow and overflow
* by scaling. Otherwise we would lose half the exponent range. There are
* various ways of doing guarded computation. For now chose the simplest
* and fastest solution, however this may suffer from inaccuracies if sqrt
* and division are not IEEE compliant.
*/
__host__ __device__ static __inline__ double cuCabs (cuDoubleComplex x)
{
double a = cuCreal(x);
double b = cuCimag(x);
double v, w, t;
a = fabs(a);
b = fabs(b);
if (a > b) {
v = a;
w = b;
} else {
v = b;
w = a;
}
t = w / v;
t = 1.0 + t * t;
t = v * sqrt(t);
if ((v == 0.0) ||
(v > 1.79769313486231570e+308) || (w > 1.79769313486231570e+308)) {
t = v + w;
}
return t;
}
#if defined(__cplusplus)
}
#endif /* __cplusplus */
/* aliases */
typedef cuFloatComplex cuComplex;
__host__ __device__ static __inline__ cuComplex make_cuComplex (float x,
float y)
{
return make_cuFloatComplex (x, y);
}
/* float-to-double promotion */
__host__ __device__ static __inline__ cuDoubleComplex cuComplexFloatToDouble
(cuFloatComplex c)
{
return make_cuDoubleComplex ((double)cuCrealf(c), (double)cuCimagf(c));
}
__host__ __device__ static __inline__ cuFloatComplex cuComplexDoubleToFloat
(cuDoubleComplex c)
{
return make_cuFloatComplex ((float)cuCreal(c), (float)cuCimag(c));
}
__host__ __device__ static __inline__ cuComplex cuCfmaf( cuComplex x, cuComplex y, cuComplex d)
{
float real_res;
float imag_res;
real_res = (cuCrealf(x) * cuCrealf(y)) + cuCrealf(d);
imag_res = (cuCrealf(x) * cuCimagf(y)) + cuCimagf(d);
real_res = -(cuCimagf(x) * cuCimagf(y)) + real_res;
imag_res = (cuCimagf(x) * cuCrealf(y)) + imag_res;
return make_cuComplex(real_res, imag_res);
}
__host__ __device__ static __inline__ cuDoubleComplex cuCfma( cuDoubleComplex x, cuDoubleComplex y, cuDoubleComplex d)
{
double real_res;
double imag_res;
real_res = (cuCreal(x) * cuCreal(y)) + cuCreal(d);
imag_res = (cuCreal(x) * cuCimag(y)) + cuCimag(d);
real_res = -(cuCimag(x) * cuCimag(y)) + real_res;
imag_res = (cuCimag(x) * cuCreal(y)) + imag_res;
return make_cuDoubleComplex(real_res, imag_res);
}
#endif /* !defined(CU_COMPLEX_H_) */