|
""" |
|
Torture tests for asymptotics and high precision evaluation of |
|
special functions. |
|
|
|
(Other torture tests may also be placed here.) |
|
|
|
Running this file (gmpy recommended!) takes several CPU minutes. |
|
With Python 2.6+, multiprocessing is used automatically to run tests |
|
in parallel if many cores are available. (A single test may take between |
|
a second and several minutes; possibly more.) |
|
|
|
The idea: |
|
|
|
* We evaluate functions at positive, negative, imaginary, 45- and 135-degree |
|
complex values with magnitudes between 10^-20 to 10^20, at precisions between |
|
5 and 150 digits (we can go even higher for fast functions). |
|
|
|
* Comparing the result from two different precision levels provides |
|
a strong consistency check (particularly for functions that use |
|
different algorithms at different precision levels). |
|
|
|
* That the computation finishes at all (without failure), within reasonable |
|
time, provides a check that evaluation works at all: that the code runs, |
|
that it doesn't get stuck in an infinite loop, and that it doesn't use |
|
some extremely slowly algorithm where it could use a faster one. |
|
|
|
TODO: |
|
|
|
* Speed up those functions that take long to finish! |
|
* Generalize to test more cases; more options. |
|
* Implement a timeout mechanism. |
|
* Some functions are notably absent, including the following: |
|
* inverse trigonometric functions (some become inaccurate for complex arguments) |
|
* ci, si (not implemented properly for large complex arguments) |
|
* zeta functions (need to modify test not to try too large imaginary values) |
|
* and others... |
|
|
|
""" |
|
|
|
|
|
import sys, os |
|
from timeit import default_timer as clock |
|
|
|
if "-nogmpy" in sys.argv: |
|
sys.argv.remove('-nogmpy') |
|
os.environ['MPMATH_NOGMPY'] = 'Y' |
|
|
|
filt = '' |
|
if not sys.argv[-1].endswith(".py"): |
|
filt = sys.argv[-1] |
|
|
|
from mpmath import * |
|
from mpmath.libmp.backend import exec_ |
|
|
|
def test_asymp(f, maxdps=150, verbose=False, huge_range=False): |
|
dps = [5,15,25,50,90,150,500,1500,5000,10000] |
|
dps = [p for p in dps if p <= maxdps] |
|
def check(x,y,p,inpt): |
|
if abs(x-y)/abs(y) < workprec(20)(power)(10, -p+1): |
|
return |
|
print() |
|
print("Error!") |
|
print("Input:", inpt) |
|
print("dps =", p) |
|
print("Result 1:", x) |
|
print("Result 2:", y) |
|
print("Absolute error:", abs(x-y)) |
|
print("Relative error:", abs(x-y)/abs(y)) |
|
raise AssertionError |
|
exponents = range(-20,20) |
|
if huge_range: |
|
exponents += [-1000, -100, -50, 50, 100, 1000] |
|
for n in exponents: |
|
if verbose: |
|
sys.stdout.write(". ") |
|
mp.dps = 25 |
|
xpos = mpf(10)**n / 1.1287 |
|
xneg = -xpos |
|
ximag = xpos*j |
|
xcomplex1 = xpos*(1+j) |
|
xcomplex2 = xpos*(-1+j) |
|
for i in range(len(dps)): |
|
if verbose: |
|
print("Testing dps = %s" % dps[i]) |
|
mp.dps = dps[i] |
|
new = f(xpos), f(xneg), f(ximag), f(xcomplex1), f(xcomplex2) |
|
if i != 0: |
|
p = dps[i-1] |
|
check(prev[0], new[0], p, xpos) |
|
check(prev[1], new[1], p, xneg) |
|
check(prev[2], new[2], p, ximag) |
|
check(prev[3], new[3], p, xcomplex1) |
|
check(prev[4], new[4], p, xcomplex2) |
|
prev = new |
|
if verbose: |
|
print() |
|
|
|
a1, a2, a3, a4, a5 = 1.5, -2.25, 3.125, 4, 2 |
|
|
|
def test_bernoulli_huge(): |
|
p, q = bernfrac(9000) |
|
assert p % 10**10 == 9636701091 |
|
assert q == 4091851784687571609141381951327092757255270 |
|
mp.dps = 15 |
|
assert str(bernoulli(10**100)) == '-2.58183325604736e+987675256497386331227838638980680030172857347883537824464410652557820800494271520411283004120790908623' |
|
mp.dps = 50 |
|
assert str(bernoulli(10**100)) == '-2.5818332560473632073252488656039475548106223822913e+987675256497386331227838638980680030172857347883537824464410652557820800494271520411283004120790908623' |
|
mp.dps = 15 |
|
|
|
cases = """\ |
|
test_bernoulli_huge() |
|
test_asymp(lambda z: +pi, maxdps=10000) |
|
test_asymp(lambda z: +e, maxdps=10000) |
|
test_asymp(lambda z: +ln2, maxdps=10000) |
|
test_asymp(lambda z: +ln10, maxdps=10000) |
|
test_asymp(lambda z: +phi, maxdps=10000) |
|
test_asymp(lambda z: +catalan, maxdps=5000) |
|
test_asymp(lambda z: +euler, maxdps=5000) |
|
test_asymp(lambda z: +glaisher, maxdps=1000) |
|
test_asymp(lambda z: +khinchin, maxdps=1000) |
|
test_asymp(lambda z: +twinprime, maxdps=150) |
|
test_asymp(lambda z: stieltjes(2), maxdps=150) |
|
test_asymp(lambda z: +mertens, maxdps=150) |
|
test_asymp(lambda z: +apery, maxdps=5000) |
|
test_asymp(sqrt, maxdps=10000, huge_range=True) |
|
test_asymp(cbrt, maxdps=5000, huge_range=True) |
|
test_asymp(lambda z: root(z,4), maxdps=5000, huge_range=True) |
|
test_asymp(lambda z: root(z,-5), maxdps=5000, huge_range=True) |
|
test_asymp(exp, maxdps=5000, huge_range=True) |
|
test_asymp(expm1, maxdps=1500) |
|
test_asymp(ln, maxdps=5000, huge_range=True) |
|
test_asymp(cosh, maxdps=5000) |
|
test_asymp(sinh, maxdps=5000) |
|
test_asymp(tanh, maxdps=1500) |
|
test_asymp(sin, maxdps=5000, huge_range=True) |
|
test_asymp(cos, maxdps=5000, huge_range=True) |
|
test_asymp(tan, maxdps=1500) |
|
test_asymp(agm, maxdps=1500, huge_range=True) |
|
test_asymp(ellipk, maxdps=1500) |
|
test_asymp(ellipe, maxdps=1500) |
|
test_asymp(lambertw, huge_range=True) |
|
test_asymp(lambda z: lambertw(z,-1)) |
|
test_asymp(lambda z: lambertw(z,1)) |
|
test_asymp(lambda z: lambertw(z,4)) |
|
test_asymp(gamma) |
|
test_asymp(loggamma) # huge_range=True ? |
|
test_asymp(ei) |
|
test_asymp(e1) |
|
test_asymp(li, huge_range=True) |
|
test_asymp(ci) |
|
test_asymp(si) |
|
test_asymp(chi) |
|
test_asymp(shi) |
|
test_asymp(erf) |
|
test_asymp(erfc) |
|
test_asymp(erfi) |
|
test_asymp(lambda z: besselj(2, z)) |
|
test_asymp(lambda z: bessely(2, z)) |
|
test_asymp(lambda z: besseli(2, z)) |
|
test_asymp(lambda z: besselk(2, z)) |
|
test_asymp(lambda z: besselj(-2.25, z)) |
|
test_asymp(lambda z: bessely(-2.25, z)) |
|
test_asymp(lambda z: besseli(-2.25, z)) |
|
test_asymp(lambda z: besselk(-2.25, z)) |
|
test_asymp(airyai) |
|
test_asymp(airybi) |
|
test_asymp(lambda z: hyp0f1(a1, z)) |
|
test_asymp(lambda z: hyp1f1(a1, a2, z)) |
|
test_asymp(lambda z: hyp1f2(a1, a2, a3, z)) |
|
test_asymp(lambda z: hyp2f0(a1, a2, z)) |
|
test_asymp(lambda z: hyperu(a1, a2, z)) |
|
test_asymp(lambda z: hyp2f1(a1, a2, a3, z)) |
|
test_asymp(lambda z: hyp2f2(a1, a2, a3, a4, z)) |
|
test_asymp(lambda z: hyp2f3(a1, a2, a3, a4, a5, z)) |
|
test_asymp(lambda z: coulombf(a1, a2, z)) |
|
test_asymp(lambda z: coulombg(a1, a2, z)) |
|
test_asymp(lambda z: polylog(2,z)) |
|
test_asymp(lambda z: polylog(3,z)) |
|
test_asymp(lambda z: polylog(-2,z)) |
|
test_asymp(lambda z: expint(4, z)) |
|
test_asymp(lambda z: expint(-4, z)) |
|
test_asymp(lambda z: expint(2.25, z)) |
|
test_asymp(lambda z: gammainc(2.5, z, 5)) |
|
test_asymp(lambda z: gammainc(2.5, 5, z)) |
|
test_asymp(lambda z: hermite(3, z)) |
|
test_asymp(lambda z: hermite(2.5, z)) |
|
test_asymp(lambda z: legendre(3, z)) |
|
test_asymp(lambda z: legendre(4, z)) |
|
test_asymp(lambda z: legendre(2.5, z)) |
|
test_asymp(lambda z: legenp(a1, a2, z)) |
|
test_asymp(lambda z: legenq(a1, a2, z), maxdps=90) # abnormally slow |
|
test_asymp(lambda z: jtheta(1, z, 0.5)) |
|
test_asymp(lambda z: jtheta(2, z, 0.5)) |
|
test_asymp(lambda z: jtheta(3, z, 0.5)) |
|
test_asymp(lambda z: jtheta(4, z, 0.5)) |
|
test_asymp(lambda z: jtheta(1, z, 0.5, 1)) |
|
test_asymp(lambda z: jtheta(2, z, 0.5, 1)) |
|
test_asymp(lambda z: jtheta(3, z, 0.5, 1)) |
|
test_asymp(lambda z: jtheta(4, z, 0.5, 1)) |
|
test_asymp(barnesg, maxdps=90) |
|
""" |
|
|
|
def testit(line): |
|
if filt in line: |
|
print(line) |
|
t1 = clock() |
|
exec_(line, globals(), locals()) |
|
t2 = clock() |
|
elapsed = t2-t1 |
|
print("Time:", elapsed, "for", line, "(OK)") |
|
|
|
if __name__ == '__main__': |
|
try: |
|
from multiprocessing import Pool |
|
mapf = Pool(None).map |
|
print("Running tests with multiprocessing") |
|
except ImportError: |
|
print("Not using multiprocessing") |
|
mapf = map |
|
t1 = clock() |
|
tasks = cases.splitlines() |
|
mapf(testit, tasks) |
|
t2 = clock() |
|
print("Cumulative wall time:", t2-t1) |
|
|