|
|
|
|
|
|
|
from mpmath import mp |
|
from mpmath import libmp |
|
|
|
xrange = libmp.backend.xrange |
|
|
|
def run_hessenberg(A, verbose = 0): |
|
if verbose > 1: |
|
print("original matrix (hessenberg):\n", A) |
|
|
|
n = A.rows |
|
|
|
Q, H = mp.hessenberg(A) |
|
|
|
if verbose > 1: |
|
print("Q:\n",Q) |
|
print("H:\n",H) |
|
|
|
B = Q * H * Q.transpose_conj() |
|
|
|
eps = mp.exp(0.8 * mp.log(mp.eps)) |
|
|
|
err0 = 0 |
|
for x in xrange(n): |
|
for y in xrange(n): |
|
err0 += abs(A[y,x] - B[y,x]) |
|
err0 /= n * n |
|
|
|
err1 = 0 |
|
for x in xrange(n): |
|
for y in xrange(x + 2, n): |
|
err1 += abs(H[y,x]) |
|
|
|
if verbose > 0: |
|
print("difference (H):", err0, err1) |
|
|
|
if verbose > 1: |
|
print("B:\n", B) |
|
|
|
assert err0 < eps |
|
assert err1 == 0 |
|
|
|
|
|
def run_schur(A, verbose = 0): |
|
if verbose > 1: |
|
print("original matrix (schur):\n", A) |
|
|
|
n = A.rows |
|
|
|
Q, R = mp.schur(A) |
|
|
|
if verbose > 1: |
|
print("Q:\n", Q) |
|
print("R:\n", R) |
|
|
|
B = Q * R * Q.transpose_conj() |
|
C = Q * Q.transpose_conj() |
|
|
|
eps = mp.exp(0.8 * mp.log(mp.eps)) |
|
|
|
err0 = 0 |
|
for x in xrange(n): |
|
for y in xrange(n): |
|
err0 += abs(A[y,x] - B[y,x]) |
|
err0 /= n * n |
|
|
|
err1 = 0 |
|
for x in xrange(n): |
|
for y in xrange(n): |
|
if x == y: |
|
C[y,x] -= 1 |
|
err1 += abs(C[y,x]) |
|
err1 /= n * n |
|
|
|
err2 = 0 |
|
for x in xrange(n): |
|
for y in xrange(x + 1, n): |
|
err2 += abs(R[y,x]) |
|
|
|
if verbose > 0: |
|
print("difference (S):", err0, err1, err2) |
|
|
|
if verbose > 1: |
|
print("B:\n", B) |
|
|
|
assert err0 < eps |
|
assert err1 < eps |
|
assert err2 == 0 |
|
|
|
def run_eig(A, verbose = 0): |
|
if verbose > 1: |
|
print("original matrix (eig):\n", A) |
|
|
|
n = A.rows |
|
|
|
E, EL, ER = mp.eig(A, left = True, right = True) |
|
|
|
if verbose > 1: |
|
print("E:\n", E) |
|
print("EL:\n", EL) |
|
print("ER:\n", ER) |
|
|
|
eps = mp.exp(0.8 * mp.log(mp.eps)) |
|
|
|
err0 = 0 |
|
for i in xrange(n): |
|
B = A * ER[:,i] - E[i] * ER[:,i] |
|
err0 = max(err0, mp.mnorm(B)) |
|
|
|
B = EL[i,:] * A - EL[i,:] * E[i] |
|
err0 = max(err0, mp.mnorm(B)) |
|
|
|
err0 /= n * n |
|
|
|
if verbose > 0: |
|
print("difference (E):", err0) |
|
|
|
assert err0 < eps |
|
|
|
|
|
|
|
def test_eig_dyn(): |
|
v = 0 |
|
for i in xrange(5): |
|
n = 1 + int(mp.rand() * 5) |
|
if mp.rand() > 0.5: |
|
|
|
A = 2 * mp.randmatrix(n, n) - 1 |
|
if mp.rand() > 0.5: |
|
A *= 10 |
|
for x in xrange(n): |
|
for y in xrange(n): |
|
A[x,y] = int(A[x,y]) |
|
else: |
|
A = (2 * mp.randmatrix(n, n) - 1) + 1j * (2 * mp.randmatrix(n, n) - 1) |
|
if mp.rand() > 0.5: |
|
A *= 10 |
|
for x in xrange(n): |
|
for y in xrange(n): |
|
A[x,y] = int(mp.re(A[x,y])) + 1j * int(mp.im(A[x,y])) |
|
|
|
run_hessenberg(A, verbose = v) |
|
run_schur(A, verbose = v) |
|
run_eig(A, verbose = v) |
|
|
|
def test_eig(): |
|
v = 0 |
|
AS = [] |
|
|
|
A = mp.matrix([[2, 1, 0], |
|
[0, 2, 1], |
|
[0, 0, 2]]) |
|
AS.append(A) |
|
AS.append(A.transpose()) |
|
|
|
A = mp.matrix([[2, 0, 0], |
|
[0, 2, 1], |
|
[0, 0, 2]]) |
|
AS.append(A) |
|
AS.append(A.transpose()) |
|
|
|
A = mp.matrix([[2, 0, 1], |
|
[0, 2, 0], |
|
[0, 0, 2]]) |
|
AS.append(A) |
|
AS.append(A.transpose()) |
|
|
|
A= mp.matrix([[0, 0, 1], |
|
[1, 0, 0], |
|
[0, 1, 0]]) |
|
AS.append(A) |
|
AS.append(A.transpose()) |
|
|
|
for A in AS: |
|
run_hessenberg(A, verbose = v) |
|
run_schur(A, verbose = v) |
|
run_eig(A, verbose = v) |
|
|