|
""" |
|
Low-level functions for arbitrary-precision floating-point arithmetic. |
|
""" |
|
|
|
__docformat__ = 'plaintext' |
|
|
|
import math |
|
|
|
from bisect import bisect |
|
|
|
import sys |
|
|
|
|
|
|
|
getrandbits = None |
|
|
|
from .backend import (MPZ, MPZ_TYPE, MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_FIVE, |
|
BACKEND, STRICT, HASH_MODULUS, HASH_BITS, gmpy, sage, sage_utils) |
|
|
|
from .libintmath import (giant_steps, |
|
trailtable, bctable, lshift, rshift, bitcount, trailing, |
|
sqrt_fixed, numeral, isqrt, isqrt_fast, sqrtrem, |
|
bin_to_radix) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if BACKEND == 'sage': |
|
def to_pickable(x): |
|
sign, man, exp, bc = x |
|
return sign, hex(man), exp, bc |
|
else: |
|
def to_pickable(x): |
|
sign, man, exp, bc = x |
|
return sign, hex(man)[2:], exp, bc |
|
|
|
def from_pickable(x): |
|
sign, man, exp, bc = x |
|
return (sign, MPZ(man, 16), exp, bc) |
|
|
|
class ComplexResult(ValueError): |
|
pass |
|
|
|
try: |
|
intern |
|
except NameError: |
|
intern = lambda x: x |
|
|
|
|
|
round_nearest = intern('n') |
|
round_floor = intern('f') |
|
round_ceiling = intern('c') |
|
round_up = intern('u') |
|
round_down = intern('d') |
|
round_fast = round_down |
|
|
|
def prec_to_dps(n): |
|
"""Return number of accurate decimals that can be represented |
|
with a precision of n bits.""" |
|
return max(1, int(round(int(n)/3.3219280948873626)-1)) |
|
|
|
def dps_to_prec(n): |
|
"""Return the number of bits required to represent n decimals |
|
accurately.""" |
|
return max(1, int(round((int(n)+1)*3.3219280948873626))) |
|
|
|
def repr_dps(n): |
|
"""Return the number of decimal digits required to represent |
|
a number with n-bit precision so that it can be uniquely |
|
reconstructed from the representation.""" |
|
dps = prec_to_dps(n) |
|
if dps == 15: |
|
return 17 |
|
return dps + 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fzero = (0, MPZ_ZERO, 0, 0) |
|
fnzero = (1, MPZ_ZERO, 0, 0) |
|
fone = (0, MPZ_ONE, 0, 1) |
|
fnone = (1, MPZ_ONE, 0, 1) |
|
ftwo = (0, MPZ_ONE, 1, 1) |
|
ften = (0, MPZ_FIVE, 1, 3) |
|
fhalf = (0, MPZ_ONE, -1, 1) |
|
|
|
|
|
fnan = (0, MPZ_ZERO, -123, -1) |
|
finf = (0, MPZ_ZERO, -456, -2) |
|
fninf = (1, MPZ_ZERO, -789, -3) |
|
|
|
|
|
math_float_inf = 1e300 * 1e300 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def round_int(x, n, rnd): |
|
if rnd == round_nearest: |
|
if x >= 0: |
|
t = x >> (n-1) |
|
if t & 1 and ((t & 2) or (x & h_mask[n<300][n])): |
|
return (t>>1)+1 |
|
else: |
|
return t>>1 |
|
else: |
|
return -round_int(-x, n, rnd) |
|
if rnd == round_floor: |
|
return x >> n |
|
if rnd == round_ceiling: |
|
return -((-x) >> n) |
|
if rnd == round_down: |
|
if x >= 0: |
|
return x >> n |
|
return -((-x) >> n) |
|
if rnd == round_up: |
|
if x >= 0: |
|
return -((-x) >> n) |
|
return x >> n |
|
|
|
|
|
|
|
class h_mask_big: |
|
def __getitem__(self, n): |
|
return (MPZ_ONE<<(n-1))-1 |
|
|
|
h_mask_small = [0]+[((MPZ_ONE<<(_-1))-1) for _ in range(1, 300)] |
|
h_mask = [h_mask_big(), h_mask_small] |
|
|
|
|
|
|
|
|
|
shifts_down = {round_floor:(1,0), round_ceiling:(0,1), |
|
round_down:(1,1), round_up:(0,0)} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _normalize(sign, man, exp, bc, prec, rnd): |
|
""" |
|
Create a raw mpf tuple with value (-1)**sign * man * 2**exp and |
|
normalized mantissa. The mantissa is rounded in the specified |
|
direction if its size exceeds the precision. Trailing zero bits |
|
are also stripped from the mantissa to ensure that the |
|
representation is canonical. |
|
|
|
Conditions on the input: |
|
* The input must represent a regular (finite) number |
|
* The sign bit must be 0 or 1 |
|
* The mantissa must be positive |
|
* The exponent must be an integer |
|
* The bitcount must be exact |
|
|
|
If these conditions are not met, use from_man_exp, mpf_pos, or any |
|
of the conversion functions to create normalized raw mpf tuples. |
|
""" |
|
if not man: |
|
return fzero |
|
|
|
n = bc - prec |
|
if n > 0: |
|
if rnd == round_nearest: |
|
t = man >> (n-1) |
|
if t & 1 and ((t & 2) or (man & h_mask[n<300][n])): |
|
man = (t>>1)+1 |
|
else: |
|
man = t>>1 |
|
elif shifts_down[rnd][sign]: |
|
man >>= n |
|
else: |
|
man = -((-man)>>n) |
|
exp += n |
|
bc = prec |
|
|
|
if not man & 1: |
|
t = trailtable[int(man & 255)] |
|
if not t: |
|
while not man & 255: |
|
man >>= 8 |
|
exp += 8 |
|
bc -= 8 |
|
t = trailtable[int(man & 255)] |
|
man >>= t |
|
exp += t |
|
bc -= t |
|
|
|
|
|
|
|
|
|
if man == 1: |
|
bc = 1 |
|
return sign, man, exp, bc |
|
|
|
def _normalize1(sign, man, exp, bc, prec, rnd): |
|
"""same as normalize, but with the added condition that |
|
man is odd or zero |
|
""" |
|
if not man: |
|
return fzero |
|
if bc <= prec: |
|
return sign, man, exp, bc |
|
n = bc - prec |
|
if rnd == round_nearest: |
|
t = man >> (n-1) |
|
if t & 1 and ((t & 2) or (man & h_mask[n<300][n])): |
|
man = (t>>1)+1 |
|
else: |
|
man = t>>1 |
|
elif shifts_down[rnd][sign]: |
|
man >>= n |
|
else: |
|
man = -((-man)>>n) |
|
exp += n |
|
bc = prec |
|
|
|
if not man & 1: |
|
t = trailtable[int(man & 255)] |
|
if not t: |
|
while not man & 255: |
|
man >>= 8 |
|
exp += 8 |
|
bc -= 8 |
|
t = trailtable[int(man & 255)] |
|
man >>= t |
|
exp += t |
|
bc -= t |
|
|
|
|
|
|
|
|
|
if man == 1: |
|
bc = 1 |
|
return sign, man, exp, bc |
|
|
|
try: |
|
_exp_types = (int, long) |
|
except NameError: |
|
_exp_types = (int,) |
|
|
|
def strict_normalize(sign, man, exp, bc, prec, rnd): |
|
"""Additional checks on the components of an mpf. Enable tests by setting |
|
the environment variable MPMATH_STRICT to Y.""" |
|
assert type(man) == MPZ_TYPE |
|
assert type(bc) in _exp_types |
|
assert type(exp) in _exp_types |
|
assert bc == bitcount(man) |
|
return _normalize(sign, man, exp, bc, prec, rnd) |
|
|
|
def strict_normalize1(sign, man, exp, bc, prec, rnd): |
|
"""Additional checks on the components of an mpf. Enable tests by setting |
|
the environment variable MPMATH_STRICT to Y.""" |
|
assert type(man) == MPZ_TYPE |
|
assert type(bc) in _exp_types |
|
assert type(exp) in _exp_types |
|
assert bc == bitcount(man) |
|
assert (not man) or (man & 1) |
|
return _normalize1(sign, man, exp, bc, prec, rnd) |
|
|
|
if BACKEND == 'gmpy' and '_mpmath_normalize' in dir(gmpy): |
|
_normalize = gmpy._mpmath_normalize |
|
_normalize1 = gmpy._mpmath_normalize |
|
|
|
if BACKEND == 'sage': |
|
_normalize = _normalize1 = sage_utils.normalize |
|
|
|
if STRICT: |
|
normalize = strict_normalize |
|
normalize1 = strict_normalize1 |
|
else: |
|
normalize = _normalize |
|
normalize1 = _normalize1 |
|
|
|
|
|
|
|
|
|
|
|
def from_man_exp(man, exp, prec=None, rnd=round_fast): |
|
"""Create raw mpf from (man, exp) pair. The mantissa may be signed. |
|
If no precision is specified, the mantissa is stored exactly.""" |
|
man = MPZ(man) |
|
sign = 0 |
|
if man < 0: |
|
sign = 1 |
|
man = -man |
|
if man < 1024: |
|
bc = bctable[int(man)] |
|
else: |
|
bc = bitcount(man) |
|
if not prec: |
|
if not man: |
|
return fzero |
|
if not man & 1: |
|
if man & 2: |
|
return (sign, man >> 1, exp + 1, bc - 1) |
|
t = trailtable[int(man & 255)] |
|
if not t: |
|
while not man & 255: |
|
man >>= 8 |
|
exp += 8 |
|
bc -= 8 |
|
t = trailtable[int(man & 255)] |
|
man >>= t |
|
exp += t |
|
bc -= t |
|
return (sign, man, exp, bc) |
|
return normalize(sign, man, exp, bc, prec, rnd) |
|
|
|
int_cache = dict((n, from_man_exp(n, 0)) for n in range(-10, 257)) |
|
|
|
if BACKEND == 'gmpy' and '_mpmath_create' in dir(gmpy): |
|
from_man_exp = gmpy._mpmath_create |
|
|
|
if BACKEND == 'sage': |
|
from_man_exp = sage_utils.from_man_exp |
|
|
|
def from_int(n, prec=0, rnd=round_fast): |
|
"""Create a raw mpf from an integer. If no precision is specified, |
|
the mantissa is stored exactly.""" |
|
if not prec: |
|
if n in int_cache: |
|
return int_cache[n] |
|
return from_man_exp(n, 0, prec, rnd) |
|
|
|
def to_man_exp(s): |
|
"""Return (man, exp) of a raw mpf. Raise an error if inf/nan.""" |
|
sign, man, exp, bc = s |
|
if (not man) and exp: |
|
raise ValueError("mantissa and exponent are undefined for %s" % man) |
|
return man, exp |
|
|
|
def to_int(s, rnd=None): |
|
"""Convert a raw mpf to the nearest int. Rounding is done down by |
|
default (same as int(float) in Python), but can be changed. If the |
|
input is inf/nan, an exception is raised.""" |
|
sign, man, exp, bc = s |
|
if (not man) and exp: |
|
raise ValueError("cannot convert inf or nan to int") |
|
if exp >= 0: |
|
if sign: |
|
return (-man) << exp |
|
return man << exp |
|
|
|
if not rnd: |
|
if sign: |
|
return -(man >> (-exp)) |
|
else: |
|
return man >> (-exp) |
|
if sign: |
|
return round_int(-man, -exp, rnd) |
|
else: |
|
return round_int(man, -exp, rnd) |
|
|
|
def mpf_round_int(s, rnd): |
|
sign, man, exp, bc = s |
|
if (not man) and exp: |
|
return s |
|
if exp >= 0: |
|
return s |
|
mag = exp+bc |
|
if mag < 1: |
|
if rnd == round_ceiling: |
|
if sign: return fzero |
|
else: return fone |
|
elif rnd == round_floor: |
|
if sign: return fnone |
|
else: return fzero |
|
elif rnd == round_nearest: |
|
if mag < 0 or man == MPZ_ONE: return fzero |
|
elif sign: return fnone |
|
else: return fone |
|
else: |
|
raise NotImplementedError |
|
return mpf_pos(s, min(bc, mag), rnd) |
|
|
|
def mpf_floor(s, prec=0, rnd=round_fast): |
|
v = mpf_round_int(s, round_floor) |
|
if prec: |
|
v = mpf_pos(v, prec, rnd) |
|
return v |
|
|
|
def mpf_ceil(s, prec=0, rnd=round_fast): |
|
v = mpf_round_int(s, round_ceiling) |
|
if prec: |
|
v = mpf_pos(v, prec, rnd) |
|
return v |
|
|
|
def mpf_nint(s, prec=0, rnd=round_fast): |
|
v = mpf_round_int(s, round_nearest) |
|
if prec: |
|
v = mpf_pos(v, prec, rnd) |
|
return v |
|
|
|
def mpf_frac(s, prec=0, rnd=round_fast): |
|
return mpf_sub(s, mpf_floor(s), prec, rnd) |
|
|
|
def from_float(x, prec=53, rnd=round_fast): |
|
"""Create a raw mpf from a Python float, rounding if necessary. |
|
If prec >= 53, the result is guaranteed to represent exactly the |
|
same number as the input. If prec is not specified, use prec=53.""" |
|
|
|
if x != x: |
|
return fnan |
|
|
|
|
|
try: |
|
m, e = math.frexp(x) |
|
except: |
|
if x == math_float_inf: return finf |
|
if x == -math_float_inf: return fninf |
|
return fnan |
|
if x == math_float_inf: return finf |
|
if x == -math_float_inf: return fninf |
|
return from_man_exp(int(m*(1<<53)), e-53, prec, rnd) |
|
|
|
def from_npfloat(x, prec=113, rnd=round_fast): |
|
"""Create a raw mpf from a numpy float, rounding if necessary. |
|
If prec >= 113, the result is guaranteed to represent exactly the |
|
same number as the input. If prec is not specified, use prec=113.""" |
|
y = float(x) |
|
if x == y: |
|
return from_float(y, prec, rnd) |
|
import numpy as np |
|
if np.isfinite(x): |
|
m, e = np.frexp(x) |
|
return from_man_exp(int(np.ldexp(m, 113)), int(e-113), prec, rnd) |
|
if np.isposinf(x): return finf |
|
if np.isneginf(x): return fninf |
|
return fnan |
|
|
|
def from_Decimal(x, prec=None, rnd=round_fast): |
|
"""Create a raw mpf from a Decimal, rounding if necessary. |
|
If prec is not specified, use the equivalent bit precision |
|
of the number of significant digits in x.""" |
|
if x.is_nan(): return fnan |
|
if x.is_infinite(): return fninf if x.is_signed() else finf |
|
if prec is None: |
|
prec = int(len(x.as_tuple()[1])*3.3219280948873626) |
|
return from_str(str(x), prec, rnd) |
|
|
|
def to_float(s, strict=False, rnd=round_fast): |
|
""" |
|
Convert a raw mpf to a Python float. The result is exact if the |
|
bitcount of s is <= 53 and no underflow/overflow occurs. |
|
|
|
If the number is too large or too small to represent as a regular |
|
float, it will be converted to inf or 0.0. Setting strict=True |
|
forces an OverflowError to be raised instead. |
|
|
|
Warning: with a directed rounding mode, the correct nearest representable |
|
floating-point number in the specified direction might not be computed |
|
in case of overflow or (gradual) underflow. |
|
""" |
|
sign, man, exp, bc = s |
|
if not man: |
|
if s == fzero: return 0.0 |
|
if s == finf: return math_float_inf |
|
if s == fninf: return -math_float_inf |
|
return math_float_inf/math_float_inf |
|
if bc > 53: |
|
sign, man, exp, bc = normalize1(sign, man, exp, bc, 53, rnd) |
|
if sign: |
|
man = -man |
|
try: |
|
return math.ldexp(man, exp) |
|
except OverflowError: |
|
if strict: |
|
raise |
|
|
|
if exp + bc > 0: |
|
if sign: |
|
return -math_float_inf |
|
else: |
|
return math_float_inf |
|
|
|
return 0.0 |
|
|
|
def from_rational(p, q, prec, rnd=round_fast): |
|
"""Create a raw mpf from a rational number p/q, round if |
|
necessary.""" |
|
return mpf_div(from_int(p), from_int(q), prec, rnd) |
|
|
|
def to_rational(s): |
|
"""Convert a raw mpf to a rational number. Return integers (p, q) |
|
such that s = p/q exactly.""" |
|
sign, man, exp, bc = s |
|
if sign: |
|
man = -man |
|
if bc == -1: |
|
raise ValueError("cannot convert %s to a rational number" % man) |
|
if exp >= 0: |
|
return man * (1<<exp), 1 |
|
else: |
|
return man, 1<<(-exp) |
|
|
|
def to_fixed(s, prec): |
|
"""Convert a raw mpf to a fixed-point big integer""" |
|
sign, man, exp, bc = s |
|
offset = exp + prec |
|
if sign: |
|
if offset >= 0: return (-man) << offset |
|
else: return (-man) >> (-offset) |
|
else: |
|
if offset >= 0: return man << offset |
|
else: return man >> (-offset) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mpf_rand(prec): |
|
"""Return a raw mpf chosen randomly from [0, 1), with prec bits |
|
in the mantissa.""" |
|
global getrandbits |
|
if not getrandbits: |
|
import random |
|
getrandbits = random.getrandbits |
|
return from_man_exp(getrandbits(prec), -prec, prec, round_floor) |
|
|
|
def mpf_eq(s, t): |
|
"""Test equality of two raw mpfs. This is simply tuple comparison |
|
unless either number is nan, in which case the result is False.""" |
|
if not s[1] or not t[1]: |
|
if s == fnan or t == fnan: |
|
return False |
|
return s == t |
|
|
|
def mpf_hash(s): |
|
|
|
if sys.version_info >= (3, 2): |
|
ssign, sman, sexp, sbc = s |
|
|
|
|
|
if not sman: |
|
if s == fnan: return sys.hash_info.nan |
|
if s == finf: return sys.hash_info.inf |
|
if s == fninf: return -sys.hash_info.inf |
|
h = sman % HASH_MODULUS |
|
if sexp >= 0: |
|
sexp = sexp % HASH_BITS |
|
else: |
|
sexp = HASH_BITS - 1 - ((-1 - sexp) % HASH_BITS) |
|
h = (h << sexp) % HASH_MODULUS |
|
if ssign: h = -h |
|
if h == -1: h = -2 |
|
return int(h) |
|
else: |
|
try: |
|
|
|
return hash(to_float(s, strict=1)) |
|
except OverflowError: |
|
|
|
|
|
|
|
return hash(s) |
|
|
|
def mpf_cmp(s, t): |
|
"""Compare the raw mpfs s and t. Return -1 if s < t, 0 if s == t, |
|
and 1 if s > t. (Same convention as Python's cmp() function.)""" |
|
|
|
|
|
|
|
|
|
ssign, sman, sexp, sbc = s |
|
tsign, tman, texp, tbc = t |
|
|
|
|
|
if not sman or not tman: |
|
if s == fzero: return -mpf_sign(t) |
|
if t == fzero: return mpf_sign(s) |
|
if s == t: return 0 |
|
|
|
if t == fnan: return 1 |
|
if s == finf: return 1 |
|
if t == fninf: return 1 |
|
return -1 |
|
|
|
if ssign != tsign: |
|
if not ssign: return 1 |
|
return -1 |
|
|
|
if sexp == texp: |
|
if sman == tman: |
|
return 0 |
|
if sman > tman: |
|
if ssign: return -1 |
|
else: return 1 |
|
else: |
|
if ssign: return 1 |
|
else: return -1 |
|
|
|
|
|
a = sbc + sexp |
|
b = tbc + texp |
|
if ssign: |
|
if a < b: return 1 |
|
if a > b: return -1 |
|
else: |
|
if a < b: return -1 |
|
if a > b: return 1 |
|
|
|
|
|
|
|
delta = mpf_sub(s, t, 5, round_floor) |
|
if delta[0]: |
|
return -1 |
|
return 1 |
|
|
|
def mpf_lt(s, t): |
|
if s == fnan or t == fnan: |
|
return False |
|
return mpf_cmp(s, t) < 0 |
|
|
|
def mpf_le(s, t): |
|
if s == fnan or t == fnan: |
|
return False |
|
return mpf_cmp(s, t) <= 0 |
|
|
|
def mpf_gt(s, t): |
|
if s == fnan or t == fnan: |
|
return False |
|
return mpf_cmp(s, t) > 0 |
|
|
|
def mpf_ge(s, t): |
|
if s == fnan or t == fnan: |
|
return False |
|
return mpf_cmp(s, t) >= 0 |
|
|
|
def mpf_min_max(seq): |
|
min = max = seq[0] |
|
for x in seq[1:]: |
|
if mpf_lt(x, min): min = x |
|
if mpf_gt(x, max): max = x |
|
return min, max |
|
|
|
def mpf_pos(s, prec=0, rnd=round_fast): |
|
"""Calculate 0+s for a raw mpf (i.e., just round s to the specified |
|
precision).""" |
|
if prec: |
|
sign, man, exp, bc = s |
|
if (not man) and exp: |
|
return s |
|
return normalize1(sign, man, exp, bc, prec, rnd) |
|
return s |
|
|
|
def mpf_neg(s, prec=None, rnd=round_fast): |
|
"""Negate a raw mpf (return -s), rounding the result to the |
|
specified precision. The prec argument can be omitted to do the |
|
operation exactly.""" |
|
sign, man, exp, bc = s |
|
if not man: |
|
if exp: |
|
if s == finf: return fninf |
|
if s == fninf: return finf |
|
return s |
|
if not prec: |
|
return (1-sign, man, exp, bc) |
|
return normalize1(1-sign, man, exp, bc, prec, rnd) |
|
|
|
def mpf_abs(s, prec=None, rnd=round_fast): |
|
"""Return abs(s) of the raw mpf s, rounded to the specified |
|
precision. The prec argument can be omitted to generate an |
|
exact result.""" |
|
sign, man, exp, bc = s |
|
if (not man) and exp: |
|
if s == fninf: |
|
return finf |
|
return s |
|
if not prec: |
|
if sign: |
|
return (0, man, exp, bc) |
|
return s |
|
return normalize1(0, man, exp, bc, prec, rnd) |
|
|
|
def mpf_sign(s): |
|
"""Return -1, 0, or 1 (as a Python int, not a raw mpf) depending on |
|
whether s is negative, zero, or positive. (Nan is taken to give 0.)""" |
|
sign, man, exp, bc = s |
|
if not man: |
|
if s == finf: return 1 |
|
if s == fninf: return -1 |
|
return 0 |
|
return (-1) ** sign |
|
|
|
def mpf_add(s, t, prec=0, rnd=round_fast, _sub=0): |
|
""" |
|
Add the two raw mpf values s and t. |
|
|
|
With prec=0, no rounding is performed. Note that this can |
|
produce a very large mantissa (potentially too large to fit |
|
in memory) if exponents are far apart. |
|
""" |
|
ssign, sman, sexp, sbc = s |
|
tsign, tman, texp, tbc = t |
|
tsign ^= _sub |
|
|
|
if sman and tman: |
|
offset = sexp - texp |
|
if offset: |
|
if offset > 0: |
|
|
|
if offset > 100 and prec: |
|
delta = sbc + sexp - tbc - texp |
|
if delta > prec + 4: |
|
offset = prec + 4 |
|
sman <<= offset |
|
if tsign == ssign: sman += 1 |
|
else: sman -= 1 |
|
return normalize1(ssign, sman, sexp-offset, |
|
bitcount(sman), prec, rnd) |
|
|
|
if ssign == tsign: |
|
man = tman + (sman << offset) |
|
|
|
else: |
|
if ssign: man = tman - (sman << offset) |
|
else: man = (sman << offset) - tman |
|
if man >= 0: |
|
ssign = 0 |
|
else: |
|
man = -man |
|
ssign = 1 |
|
bc = bitcount(man) |
|
return normalize1(ssign, man, texp, bc, prec or bc, rnd) |
|
elif offset < 0: |
|
|
|
if offset < -100 and prec: |
|
delta = tbc + texp - sbc - sexp |
|
if delta > prec + 4: |
|
offset = prec + 4 |
|
tman <<= offset |
|
if ssign == tsign: tman += 1 |
|
else: tman -= 1 |
|
return normalize1(tsign, tman, texp-offset, |
|
bitcount(tman), prec, rnd) |
|
|
|
if ssign == tsign: |
|
man = sman + (tman << -offset) |
|
|
|
else: |
|
if tsign: man = sman - (tman << -offset) |
|
else: man = (tman << -offset) - sman |
|
if man >= 0: |
|
ssign = 0 |
|
else: |
|
man = -man |
|
ssign = 1 |
|
bc = bitcount(man) |
|
return normalize1(ssign, man, sexp, bc, prec or bc, rnd) |
|
|
|
if ssign == tsign: |
|
man = tman + sman |
|
else: |
|
if ssign: man = tman - sman |
|
else: man = sman - tman |
|
if man >= 0: |
|
ssign = 0 |
|
else: |
|
man = -man |
|
ssign = 1 |
|
bc = bitcount(man) |
|
return normalize(ssign, man, texp, bc, prec or bc, rnd) |
|
|
|
if _sub: |
|
t = mpf_neg(t) |
|
if not sman: |
|
if sexp: |
|
if s == t or tman or not texp: |
|
return s |
|
return fnan |
|
if tman: |
|
return normalize1(tsign, tman, texp, tbc, prec or tbc, rnd) |
|
return t |
|
if texp: |
|
return t |
|
if sman: |
|
return normalize1(ssign, sman, sexp, sbc, prec or sbc, rnd) |
|
return s |
|
|
|
def mpf_sub(s, t, prec=0, rnd=round_fast): |
|
"""Return the difference of two raw mpfs, s-t. This function is |
|
simply a wrapper of mpf_add that changes the sign of t.""" |
|
return mpf_add(s, t, prec, rnd, 1) |
|
|
|
def mpf_sum(xs, prec=0, rnd=round_fast, absolute=False): |
|
""" |
|
Sum a list of mpf values efficiently and accurately |
|
(typically no temporary roundoff occurs). If prec=0, |
|
the final result will not be rounded either. |
|
|
|
There may be roundoff error or cancellation if extremely |
|
large exponent differences occur. |
|
|
|
With absolute=True, sums the absolute values. |
|
""" |
|
man = 0 |
|
exp = 0 |
|
max_extra_prec = prec*2 or 1000000 |
|
special = None |
|
for x in xs: |
|
xsign, xman, xexp, xbc = x |
|
if xman: |
|
if xsign and not absolute: |
|
xman = -xman |
|
delta = xexp - exp |
|
if xexp >= exp: |
|
|
|
|
|
if (delta > max_extra_prec) and \ |
|
((not man) or delta-bitcount(abs(man)) > max_extra_prec): |
|
man = xman |
|
exp = xexp |
|
else: |
|
man += (xman << delta) |
|
else: |
|
delta = -delta |
|
|
|
if delta-xbc > max_extra_prec: |
|
if not man: |
|
man, exp = xman, xexp |
|
else: |
|
man = (man << delta) + xman |
|
exp = xexp |
|
elif xexp: |
|
if absolute: |
|
x = mpf_abs(x) |
|
special = mpf_add(special or fzero, x, 1) |
|
|
|
if special: |
|
return special |
|
return from_man_exp(man, exp, prec, rnd) |
|
|
|
def gmpy_mpf_mul(s, t, prec=0, rnd=round_fast): |
|
"""Multiply two raw mpfs""" |
|
ssign, sman, sexp, sbc = s |
|
tsign, tman, texp, tbc = t |
|
sign = ssign ^ tsign |
|
man = sman*tman |
|
if man: |
|
bc = bitcount(man) |
|
if prec: |
|
return normalize1(sign, man, sexp+texp, bc, prec, rnd) |
|
else: |
|
return (sign, man, sexp+texp, bc) |
|
s_special = (not sman) and sexp |
|
t_special = (not tman) and texp |
|
if not s_special and not t_special: |
|
return fzero |
|
if fnan in (s, t): return fnan |
|
if (not tman) and texp: s, t = t, s |
|
if t == fzero: return fnan |
|
return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)] |
|
|
|
def gmpy_mpf_mul_int(s, n, prec, rnd=round_fast): |
|
"""Multiply by a Python integer.""" |
|
sign, man, exp, bc = s |
|
if not man: |
|
return mpf_mul(s, from_int(n), prec, rnd) |
|
if not n: |
|
return fzero |
|
if n < 0: |
|
sign ^= 1 |
|
n = -n |
|
man *= n |
|
return normalize(sign, man, exp, bitcount(man), prec, rnd) |
|
|
|
def python_mpf_mul(s, t, prec=0, rnd=round_fast): |
|
"""Multiply two raw mpfs""" |
|
ssign, sman, sexp, sbc = s |
|
tsign, tman, texp, tbc = t |
|
sign = ssign ^ tsign |
|
man = sman*tman |
|
if man: |
|
bc = sbc + tbc - 1 |
|
bc += int(man>>bc) |
|
if prec: |
|
return normalize1(sign, man, sexp+texp, bc, prec, rnd) |
|
else: |
|
return (sign, man, sexp+texp, bc) |
|
s_special = (not sman) and sexp |
|
t_special = (not tman) and texp |
|
if not s_special and not t_special: |
|
return fzero |
|
if fnan in (s, t): return fnan |
|
if (not tman) and texp: s, t = t, s |
|
if t == fzero: return fnan |
|
return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)] |
|
|
|
def python_mpf_mul_int(s, n, prec, rnd=round_fast): |
|
"""Multiply by a Python integer.""" |
|
sign, man, exp, bc = s |
|
if not man: |
|
return mpf_mul(s, from_int(n), prec, rnd) |
|
if not n: |
|
return fzero |
|
if n < 0: |
|
sign ^= 1 |
|
n = -n |
|
man *= n |
|
|
|
if n < 1024: |
|
bc += bctable[int(n)] - 1 |
|
else: |
|
bc += bitcount(n) - 1 |
|
bc += int(man>>bc) |
|
return normalize(sign, man, exp, bc, prec, rnd) |
|
|
|
|
|
if BACKEND == 'gmpy': |
|
mpf_mul = gmpy_mpf_mul |
|
mpf_mul_int = gmpy_mpf_mul_int |
|
else: |
|
mpf_mul = python_mpf_mul |
|
mpf_mul_int = python_mpf_mul_int |
|
|
|
def mpf_shift(s, n): |
|
"""Quickly multiply the raw mpf s by 2**n without rounding.""" |
|
sign, man, exp, bc = s |
|
if not man: |
|
return s |
|
return sign, man, exp+n, bc |
|
|
|
def mpf_frexp(x): |
|
"""Convert x = y*2**n to (y, n) with abs(y) in [0.5, 1) if nonzero""" |
|
sign, man, exp, bc = x |
|
if not man: |
|
if x == fzero: |
|
return (fzero, 0) |
|
else: |
|
raise ValueError |
|
return mpf_shift(x, -bc-exp), bc+exp |
|
|
|
def mpf_div(s, t, prec, rnd=round_fast): |
|
"""Floating-point division""" |
|
ssign, sman, sexp, sbc = s |
|
tsign, tman, texp, tbc = t |
|
if not sman or not tman: |
|
if s == fzero: |
|
if t == fzero: raise ZeroDivisionError |
|
if t == fnan: return fnan |
|
return fzero |
|
if t == fzero: |
|
raise ZeroDivisionError |
|
s_special = (not sman) and sexp |
|
t_special = (not tman) and texp |
|
if s_special and t_special: |
|
return fnan |
|
if s == fnan or t == fnan: |
|
return fnan |
|
if not t_special: |
|
if t == fzero: |
|
return fnan |
|
return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)] |
|
return fzero |
|
sign = ssign ^ tsign |
|
if tman == 1: |
|
return normalize1(sign, sman, sexp-texp, sbc, prec, rnd) |
|
|
|
|
|
extra = prec - sbc + tbc + 5 |
|
if extra < 5: |
|
extra = 5 |
|
quot, rem = divmod(sman<<extra, tman) |
|
if rem: |
|
quot = (quot<<1) + 1 |
|
extra += 1 |
|
return normalize1(sign, quot, sexp-texp-extra, bitcount(quot), prec, rnd) |
|
return normalize(sign, quot, sexp-texp-extra, bitcount(quot), prec, rnd) |
|
|
|
def mpf_rdiv_int(n, t, prec, rnd=round_fast): |
|
"""Floating-point division n/t with a Python integer as numerator""" |
|
sign, man, exp, bc = t |
|
if not n or not man: |
|
return mpf_div(from_int(n), t, prec, rnd) |
|
if n < 0: |
|
sign ^= 1 |
|
n = -n |
|
extra = prec + bc + 5 |
|
quot, rem = divmod(n<<extra, man) |
|
if rem: |
|
quot = (quot<<1) + 1 |
|
extra += 1 |
|
return normalize1(sign, quot, -exp-extra, bitcount(quot), prec, rnd) |
|
return normalize(sign, quot, -exp-extra, bitcount(quot), prec, rnd) |
|
|
|
def mpf_mod(s, t, prec, rnd=round_fast): |
|
ssign, sman, sexp, sbc = s |
|
tsign, tman, texp, tbc = t |
|
if ((not sman) and sexp) or ((not tman) and texp): |
|
return fnan |
|
|
|
if ssign == tsign and texp > sexp+sbc: |
|
return s |
|
|
|
|
|
if tman == 1 and sexp > texp+tbc: |
|
return fzero |
|
base = min(sexp, texp) |
|
sman = (-1)**ssign * sman |
|
tman = (-1)**tsign * tman |
|
man = (sman << (sexp-base)) % (tman << (texp-base)) |
|
if man >= 0: |
|
sign = 0 |
|
else: |
|
man = -man |
|
sign = 1 |
|
return normalize(sign, man, base, bitcount(man), prec, rnd) |
|
|
|
reciprocal_rnd = { |
|
round_down : round_up, |
|
round_up : round_down, |
|
round_floor : round_ceiling, |
|
round_ceiling : round_floor, |
|
round_nearest : round_nearest |
|
} |
|
|
|
negative_rnd = { |
|
round_down : round_down, |
|
round_up : round_up, |
|
round_floor : round_ceiling, |
|
round_ceiling : round_floor, |
|
round_nearest : round_nearest |
|
} |
|
|
|
def mpf_pow_int(s, n, prec, rnd=round_fast): |
|
"""Compute s**n, where s is a raw mpf and n is a Python integer.""" |
|
sign, man, exp, bc = s |
|
|
|
if (not man) and exp: |
|
if s == finf: |
|
if n > 0: return s |
|
if n == 0: return fnan |
|
return fzero |
|
if s == fninf: |
|
if n > 0: return [finf, fninf][n & 1] |
|
if n == 0: return fnan |
|
return fzero |
|
return fnan |
|
|
|
n = int(n) |
|
if n == 0: return fone |
|
if n == 1: return mpf_pos(s, prec, rnd) |
|
if n == 2: |
|
_, man, exp, bc = s |
|
if not man: |
|
return fzero |
|
man = man*man |
|
if man == 1: |
|
return (0, MPZ_ONE, exp+exp, 1) |
|
bc = bc + bc - 2 |
|
bc += bctable[int(man>>bc)] |
|
return normalize1(0, man, exp+exp, bc, prec, rnd) |
|
if n == -1: return mpf_div(fone, s, prec, rnd) |
|
if n < 0: |
|
inverse = mpf_pow_int(s, -n, prec+5, reciprocal_rnd[rnd]) |
|
return mpf_div(fone, inverse, prec, rnd) |
|
|
|
result_sign = sign & n |
|
|
|
|
|
if man == 1: |
|
return (result_sign, MPZ_ONE, exp*n, 1) |
|
if bc*n < 1000: |
|
man **= n |
|
return normalize1(result_sign, man, exp*n, bitcount(man), prec, rnd) |
|
|
|
|
|
|
|
rounds_down = (rnd == round_nearest) or \ |
|
shifts_down[rnd][result_sign] |
|
|
|
|
|
|
|
|
|
workprec = prec + 4*bitcount(n) + 4 |
|
_, pm, pe, pbc = fone |
|
while 1: |
|
if n & 1: |
|
pm = pm*man |
|
pe = pe+exp |
|
pbc += bc - 2 |
|
pbc = pbc + bctable[int(pm >> pbc)] |
|
if pbc > workprec: |
|
if rounds_down: |
|
pm = pm >> (pbc-workprec) |
|
else: |
|
pm = -((-pm) >> (pbc-workprec)) |
|
pe += pbc - workprec |
|
pbc = workprec |
|
n -= 1 |
|
if not n: |
|
break |
|
man = man*man |
|
exp = exp+exp |
|
bc = bc + bc - 2 |
|
bc = bc + bctable[int(man >> bc)] |
|
if bc > workprec: |
|
if rounds_down: |
|
man = man >> (bc-workprec) |
|
else: |
|
man = -((-man) >> (bc-workprec)) |
|
exp += bc - workprec |
|
bc = workprec |
|
n = n // 2 |
|
|
|
return normalize(result_sign, pm, pe, pbc, prec, rnd) |
|
|
|
|
|
def mpf_perturb(x, eps_sign, prec, rnd): |
|
""" |
|
For nonzero x, calculate x + eps with directed rounding, where |
|
eps < prec relatively and eps has the given sign (0 for |
|
positive, 1 for negative). |
|
|
|
With rounding to nearest, this is taken to simply normalize |
|
x to the given precision. |
|
""" |
|
if rnd == round_nearest: |
|
return mpf_pos(x, prec, rnd) |
|
sign, man, exp, bc = x |
|
eps = (eps_sign, MPZ_ONE, exp+bc-prec-1, 1) |
|
if sign: |
|
away = (rnd in (round_down, round_ceiling)) ^ eps_sign |
|
else: |
|
away = (rnd in (round_up, round_ceiling)) ^ eps_sign |
|
if away: |
|
return mpf_add(x, eps, prec, rnd) |
|
else: |
|
return mpf_pos(x, prec, rnd) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def to_digits_exp(s, dps): |
|
"""Helper function for representing the floating-point number s as |
|
a decimal with dps digits. Returns (sign, string, exponent) where |
|
sign is '' or '-', string is the digit string, and exponent is |
|
the decimal exponent as an int. |
|
|
|
If inexact, the decimal representation is rounded toward zero.""" |
|
|
|
|
|
if s[0]: |
|
sign = '-' |
|
s = mpf_neg(s) |
|
else: |
|
sign = '' |
|
_sign, man, exp, bc = s |
|
|
|
if not man: |
|
return '', '0', 0 |
|
|
|
bitprec = int(dps * math.log(10,2)) + 10 |
|
|
|
|
|
|
|
exp_from_1 = exp + bc |
|
if abs(exp_from_1) > 3500: |
|
from .libelefun import mpf_ln2, mpf_ln10 |
|
|
|
|
|
|
|
expprec = bitcount(abs(exp)) + 5 |
|
tmp = from_int(exp) |
|
tmp = mpf_mul(tmp, mpf_ln2(expprec)) |
|
tmp = mpf_div(tmp, mpf_ln10(expprec), expprec) |
|
b = to_int(tmp) |
|
s = mpf_div(s, mpf_pow_int(ften, b, bitprec), bitprec) |
|
_sign, man, exp, bc = s |
|
exponent = b |
|
else: |
|
exponent = 0 |
|
|
|
|
|
|
|
|
|
fixprec = max(bitprec - exp - bc, 0) |
|
fixdps = int(fixprec / math.log(10,2) + 0.5) |
|
sf = to_fixed(s, fixprec) |
|
sd = bin_to_radix(sf, fixprec, 10, fixdps) |
|
digits = numeral(sd, base=10, size=dps) |
|
|
|
exponent += len(digits) - fixdps - 1 |
|
return sign, digits, exponent |
|
|
|
def to_str(s, dps, strip_zeros=True, min_fixed=None, max_fixed=None, |
|
show_zero_exponent=False): |
|
""" |
|
Convert a raw mpf to a decimal floating-point literal with at |
|
most `dps` decimal digits in the mantissa (not counting extra zeros |
|
that may be inserted for visual purposes). |
|
|
|
The number will be printed in fixed-point format if the position |
|
of the leading digit is strictly between min_fixed |
|
(default = min(-dps/3,-5)) and max_fixed (default = dps). |
|
|
|
To force fixed-point format always, set min_fixed = -inf, |
|
max_fixed = +inf. To force floating-point format, set |
|
min_fixed >= max_fixed. |
|
|
|
The literal is formatted so that it can be parsed back to a number |
|
by to_str, float() or Decimal(). |
|
""" |
|
|
|
|
|
if not s[1]: |
|
if s == fzero: |
|
if dps: t = '0.0' |
|
else: t = '.0' |
|
if show_zero_exponent: |
|
t += 'e+0' |
|
return t |
|
if s == finf: return '+inf' |
|
if s == fninf: return '-inf' |
|
if s == fnan: return 'nan' |
|
raise ValueError |
|
|
|
if min_fixed is None: min_fixed = min(-(dps//3), -5) |
|
if max_fixed is None: max_fixed = dps |
|
|
|
|
|
|
|
sign, digits, exponent = to_digits_exp(s, dps+3) |
|
|
|
|
|
if not dps: |
|
if digits[0] in '56789': |
|
exponent += 1 |
|
digits = ".0" |
|
|
|
else: |
|
|
|
if len(digits) > dps and digits[dps] in '56789': |
|
digits = digits[:dps] |
|
i = dps - 1 |
|
while i >= 0 and digits[i] == '9': |
|
i -= 1 |
|
if i >= 0: |
|
digits = digits[:i] + str(int(digits[i]) + 1) + '0' * (dps - i - 1) |
|
else: |
|
digits = '1' + '0' * (dps - 1) |
|
exponent += 1 |
|
else: |
|
digits = digits[:dps] |
|
|
|
|
|
if min_fixed < exponent < max_fixed: |
|
if exponent < 0: |
|
digits = ("0"*int(-exponent)) + digits |
|
split = 1 |
|
else: |
|
split = exponent + 1 |
|
if split > dps: |
|
digits += "0"*(split-dps) |
|
exponent = 0 |
|
else: |
|
split = 1 |
|
|
|
digits = (digits[:split] + "." + digits[split:]) |
|
|
|
if strip_zeros: |
|
|
|
digits = digits.rstrip('0') |
|
if digits[-1] == ".": |
|
digits += "0" |
|
|
|
if exponent == 0 and dps and not show_zero_exponent: return sign + digits |
|
if exponent >= 0: return sign + digits + "e+" + str(exponent) |
|
if exponent < 0: return sign + digits + "e" + str(exponent) |
|
|
|
def str_to_man_exp(x, base=10): |
|
"""Helper function for from_str.""" |
|
x = x.lower().rstrip('l') |
|
|
|
float(x) |
|
|
|
parts = x.split('e') |
|
if len(parts) == 1: |
|
exp = 0 |
|
else: |
|
x = parts[0] |
|
exp = int(parts[1]) |
|
|
|
parts = x.split('.') |
|
if len(parts) == 2: |
|
a, b = parts[0], parts[1].rstrip('0') |
|
exp -= len(b) |
|
x = a + b |
|
x = MPZ(int(x, base)) |
|
return x, exp |
|
|
|
special_str = {'inf':finf, '+inf':finf, '-inf':fninf, 'nan':fnan} |
|
|
|
def from_str(x, prec, rnd=round_fast): |
|
"""Create a raw mpf from a decimal literal, rounding in the |
|
specified direction if the input number cannot be represented |
|
exactly as a binary floating-point number with the given number of |
|
bits. The literal syntax accepted is the same as for Python |
|
floats. |
|
|
|
TODO: the rounding does not work properly for large exponents. |
|
""" |
|
x = x.lower().strip() |
|
if x in special_str: |
|
return special_str[x] |
|
|
|
if '/' in x: |
|
p, q = x.split('/') |
|
p, q = p.rstrip('l'), q.rstrip('l') |
|
return from_rational(int(p), int(q), prec, rnd) |
|
|
|
man, exp = str_to_man_exp(x, base=10) |
|
|
|
|
|
|
|
if abs(exp) > 400: |
|
s = from_int(man, prec+10) |
|
s = mpf_mul(s, mpf_pow_int(ften, exp, prec+10), prec, rnd) |
|
else: |
|
if exp >= 0: |
|
s = from_int(man * 10**exp, prec, rnd) |
|
else: |
|
s = from_rational(man, 10**-exp, prec, rnd) |
|
return s |
|
|
|
|
|
|
|
|
|
def from_bstr(x): |
|
man, exp = str_to_man_exp(x, base=2) |
|
man = MPZ(man) |
|
sign = 0 |
|
if man < 0: |
|
man = -man |
|
sign = 1 |
|
bc = bitcount(man) |
|
return normalize(sign, man, exp, bc, bc, round_floor) |
|
|
|
def to_bstr(x): |
|
sign, man, exp, bc = x |
|
return ['','-'][sign] + numeral(man, size=bitcount(man), base=2) + ("e%i" % exp) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mpf_sqrt(s, prec, rnd=round_fast): |
|
""" |
|
Compute the square root of a nonnegative mpf value. The |
|
result is correctly rounded. |
|
""" |
|
sign, man, exp, bc = s |
|
if sign: |
|
raise ComplexResult("square root of a negative number") |
|
if not man: |
|
return s |
|
if exp & 1: |
|
exp -= 1 |
|
man <<= 1 |
|
bc += 1 |
|
elif man == 1: |
|
return normalize1(sign, man, exp//2, bc, prec, rnd) |
|
shift = max(4, 2*prec-bc+4) |
|
shift += shift & 1 |
|
if rnd in 'fd': |
|
man = isqrt(man<<shift) |
|
else: |
|
man, rem = sqrtrem(man<<shift) |
|
|
|
if rem: |
|
man = (man<<1)+1 |
|
shift += 2 |
|
return from_man_exp(man, (exp-shift)//2, prec, rnd) |
|
|
|
def mpf_hypot(x, y, prec, rnd=round_fast): |
|
"""Compute the Euclidean norm sqrt(x**2 + y**2) of two raw mpfs |
|
x and y.""" |
|
if y == fzero: return mpf_abs(x, prec, rnd) |
|
if x == fzero: return mpf_abs(y, prec, rnd) |
|
hypot2 = mpf_add(mpf_mul(x,x), mpf_mul(y,y), prec+4) |
|
return mpf_sqrt(hypot2, prec, rnd) |
|
|
|
|
|
if BACKEND == 'sage': |
|
try: |
|
import sage.libs.mpmath.ext_libmp as ext_lib |
|
mpf_add = ext_lib.mpf_add |
|
mpf_sub = ext_lib.mpf_sub |
|
mpf_mul = ext_lib.mpf_mul |
|
mpf_div = ext_lib.mpf_div |
|
mpf_sqrt = ext_lib.mpf_sqrt |
|
except ImportError: |
|
pass |
|
|