|
""" |
|
This module implements computation of elementary transcendental |
|
functions (powers, logarithms, trigonometric and hyperbolic |
|
functions, inverse trigonometric and hyperbolic) for real |
|
floating-point numbers. |
|
|
|
For complex and interval implementations of the same functions, |
|
see libmpc and libmpi. |
|
|
|
""" |
|
|
|
import math |
|
from bisect import bisect |
|
|
|
from .backend import xrange |
|
from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_FIVE, BACKEND |
|
|
|
from .libmpf import ( |
|
round_floor, round_ceiling, round_down, round_up, |
|
round_nearest, round_fast, |
|
ComplexResult, |
|
bitcount, bctable, lshift, rshift, giant_steps, sqrt_fixed, |
|
from_int, to_int, from_man_exp, to_fixed, to_float, from_float, |
|
from_rational, normalize, |
|
fzero, fone, fnone, fhalf, finf, fninf, fnan, |
|
mpf_cmp, mpf_sign, mpf_abs, |
|
mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_div, mpf_shift, |
|
mpf_rdiv_int, mpf_pow_int, mpf_sqrt, |
|
reciprocal_rnd, negative_rnd, mpf_perturb, |
|
isqrt_fast |
|
) |
|
|
|
from .libintmath import ifib |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if BACKEND == 'python': |
|
EXP_COSH_CUTOFF = 600 |
|
else: |
|
EXP_COSH_CUTOFF = 400 |
|
|
|
EXP_SERIES_U_CUTOFF = 1500 |
|
|
|
|
|
if BACKEND == 'python': |
|
COS_SIN_CACHE_PREC = 400 |
|
else: |
|
COS_SIN_CACHE_PREC = 200 |
|
COS_SIN_CACHE_STEP = 8 |
|
cos_sin_cache = {} |
|
|
|
|
|
MAX_LOG_INT_CACHE = 2000 |
|
log_int_cache = {} |
|
|
|
LOG_TAYLOR_PREC = 2500 |
|
LOG_TAYLOR_SHIFT = 9 |
|
log_taylor_cache = {} |
|
|
|
LOG_AGM_MAG_PREC_RATIO = 20 |
|
|
|
ATAN_TAYLOR_PREC = 3000 |
|
ATAN_TAYLOR_SHIFT = 7 |
|
atan_taylor_cache = {} |
|
|
|
|
|
|
|
cache_prec_steps = [22,22] |
|
for k in xrange(1, bitcount(LOG_TAYLOR_PREC)+1): |
|
cache_prec_steps += [min(2**k,LOG_TAYLOR_PREC)+20] * 2**(k-1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def constant_memo(f): |
|
""" |
|
Decorator for caching computed values of mathematical |
|
constants. This decorator should be applied to a |
|
function taking a single argument prec as input and |
|
returning a fixed-point value with the given precision. |
|
""" |
|
f.memo_prec = -1 |
|
f.memo_val = None |
|
def g(prec, **kwargs): |
|
memo_prec = f.memo_prec |
|
if prec <= memo_prec: |
|
return f.memo_val >> (memo_prec-prec) |
|
newprec = int(prec*1.05+10) |
|
f.memo_val = f(newprec, **kwargs) |
|
f.memo_prec = newprec |
|
return f.memo_val >> (newprec-prec) |
|
g.__name__ = f.__name__ |
|
g.__doc__ = f.__doc__ |
|
return g |
|
|
|
def def_mpf_constant(fixed): |
|
""" |
|
Create a function that computes the mpf value for a mathematical |
|
constant, given a function that computes the fixed-point value. |
|
|
|
Assumptions: the constant is positive and has magnitude ~= 1; |
|
the fixed-point function rounds to floor. |
|
""" |
|
def f(prec, rnd=round_fast): |
|
wp = prec + 20 |
|
v = fixed(wp) |
|
if rnd in (round_up, round_ceiling): |
|
v += 1 |
|
return normalize(0, v, -wp, bitcount(v), prec, rnd) |
|
f.__doc__ = fixed.__doc__ |
|
return f |
|
|
|
def bsp_acot(q, a, b, hyperbolic): |
|
if b - a == 1: |
|
a1 = MPZ(2*a + 3) |
|
if hyperbolic or a&1: |
|
return MPZ_ONE, a1 * q**2, a1 |
|
else: |
|
return -MPZ_ONE, a1 * q**2, a1 |
|
m = (a+b)//2 |
|
p1, q1, r1 = bsp_acot(q, a, m, hyperbolic) |
|
p2, q2, r2 = bsp_acot(q, m, b, hyperbolic) |
|
return q2*p1 + r1*p2, q1*q2, r1*r2 |
|
|
|
|
|
|
|
def acot_fixed(a, prec, hyperbolic): |
|
""" |
|
Compute acot(a) or acoth(a) for an integer a with binary splitting; see |
|
http://numbers.computation.free.fr/Constants/Algorithms/splitting.html |
|
""" |
|
N = int(0.35 * prec/math.log(a) + 20) |
|
p, q, r = bsp_acot(a, 0,N, hyperbolic) |
|
return ((p+q)<<prec)//(q*a) |
|
|
|
def machin(coefs, prec, hyperbolic=False): |
|
""" |
|
Evaluate a Machin-like formula, i.e., a linear combination of |
|
acot(n) or acoth(n) for specific integer values of n, using fixed- |
|
point arithmetic. The input should be a list [(c, n), ...], giving |
|
c*acot[h](n) + ... |
|
""" |
|
extraprec = 10 |
|
s = MPZ_ZERO |
|
for a, b in coefs: |
|
s += MPZ(a) * acot_fixed(MPZ(b), prec+extraprec, hyperbolic) |
|
return (s >> extraprec) |
|
|
|
|
|
|
|
|
|
@constant_memo |
|
def ln2_fixed(prec): |
|
""" |
|
Computes ln(2). This is done with a hyperbolic Machin-type formula, |
|
with binary splitting at high precision. |
|
""" |
|
return machin([(18, 26), (-2, 4801), (8, 8749)], prec, True) |
|
|
|
@constant_memo |
|
def ln10_fixed(prec): |
|
""" |
|
Computes ln(10). This is done with a hyperbolic Machin-type formula. |
|
""" |
|
return machin([(46, 31), (34, 49), (20, 161)], prec, True) |
|
|
|
|
|
r""" |
|
For computation of pi, we use the Chudnovsky series: |
|
|
|
oo |
|
___ k |
|
1 \ (-1) (6 k)! (A + B k) |
|
----- = ) ----------------------- |
|
12 pi /___ 3 3k+3/2 |
|
(3 k)! (k!) C |
|
k = 0 |
|
|
|
where A, B, and C are certain integer constants. This series adds roughly |
|
14 digits per term. Note that C^(3/2) can be extracted so that the |
|
series contains only rational terms. This makes binary splitting very |
|
efficient. |
|
|
|
The recurrence formulas for the binary splitting were taken from |
|
ftp://ftp.gmplib.org/pub/src/gmp-chudnovsky.c |
|
|
|
Previously, Machin's formula was used at low precision and the AGM iteration |
|
was used at high precision. However, the Chudnovsky series is essentially as |
|
fast as the Machin formula at low precision and in practice about 3x faster |
|
than the AGM at high precision (despite theoretically having a worse |
|
asymptotic complexity), so there is no reason not to use it in all cases. |
|
|
|
""" |
|
|
|
|
|
CHUD_A = MPZ(13591409) |
|
CHUD_B = MPZ(545140134) |
|
CHUD_C = MPZ(640320) |
|
CHUD_D = MPZ(12) |
|
|
|
def bs_chudnovsky(a, b, level, verbose): |
|
""" |
|
Computes the sum from a to b of the series in the Chudnovsky |
|
formula. Returns g, p, q where p/q is the sum as an exact |
|
fraction and g is a temporary value used to save work |
|
for recursive calls. |
|
""" |
|
if b-a == 1: |
|
g = MPZ((6*b-5)*(2*b-1)*(6*b-1)) |
|
p = b**3 * CHUD_C**3 // 24 |
|
q = (-1)**b * g * (CHUD_A+CHUD_B*b) |
|
else: |
|
if verbose and level < 4: |
|
print(" binary splitting", a, b) |
|
mid = (a+b)//2 |
|
g1, p1, q1 = bs_chudnovsky(a, mid, level+1, verbose) |
|
g2, p2, q2 = bs_chudnovsky(mid, b, level+1, verbose) |
|
p = p1*p2 |
|
g = g1*g2 |
|
q = q1*p2 + q2*g1 |
|
return g, p, q |
|
|
|
@constant_memo |
|
def pi_fixed(prec, verbose=False, verbose_base=None): |
|
""" |
|
Compute floor(pi * 2**prec) as a big integer. |
|
|
|
This is done using Chudnovsky's series (see comments in |
|
libelefun.py for details). |
|
""" |
|
|
|
N = int(prec/3.3219280948/14.181647462 + 2) |
|
if verbose: |
|
print("binary splitting with N =", N) |
|
g, p, q = bs_chudnovsky(0, N, 0, verbose) |
|
sqrtC = isqrt_fast(CHUD_C<<(2*prec)) |
|
v = p*CHUD_C*sqrtC//((q+CHUD_A*p)*CHUD_D) |
|
return v |
|
|
|
def degree_fixed(prec): |
|
return pi_fixed(prec)//180 |
|
|
|
def bspe(a, b): |
|
""" |
|
Sum series for exp(1)-1 between a, b, returning the result |
|
as an exact fraction (p, q). |
|
""" |
|
if b-a == 1: |
|
return MPZ_ONE, MPZ(b) |
|
m = (a+b)//2 |
|
p1, q1 = bspe(a, m) |
|
p2, q2 = bspe(m, b) |
|
return p1*q2+p2, q1*q2 |
|
|
|
@constant_memo |
|
def e_fixed(prec): |
|
""" |
|
Computes exp(1). This is done using the ordinary Taylor series for |
|
exp, with binary splitting. For a description of the algorithm, |
|
see: |
|
|
|
http://numbers.computation.free.fr/Constants/ |
|
Algorithms/splitting.html |
|
""" |
|
|
|
|
|
N = int(1.1*prec/math.log(prec) + 20) |
|
p, q = bspe(0,N) |
|
return ((p+q)<<prec)//q |
|
|
|
@constant_memo |
|
def phi_fixed(prec): |
|
""" |
|
Computes the golden ratio, (1+sqrt(5))/2 |
|
""" |
|
prec += 10 |
|
a = isqrt_fast(MPZ_FIVE<<(2*prec)) + (MPZ_ONE << prec) |
|
return a >> 11 |
|
|
|
mpf_phi = def_mpf_constant(phi_fixed) |
|
mpf_pi = def_mpf_constant(pi_fixed) |
|
mpf_e = def_mpf_constant(e_fixed) |
|
mpf_degree = def_mpf_constant(degree_fixed) |
|
mpf_ln2 = def_mpf_constant(ln2_fixed) |
|
mpf_ln10 = def_mpf_constant(ln10_fixed) |
|
|
|
|
|
@constant_memo |
|
def ln_sqrt2pi_fixed(prec): |
|
wp = prec + 10 |
|
|
|
return to_fixed(mpf_log(mpf_shift(mpf_pi(wp), 1), wp), prec-1) |
|
|
|
@constant_memo |
|
def sqrtpi_fixed(prec): |
|
return sqrt_fixed(pi_fixed(prec), prec) |
|
|
|
mpf_sqrtpi = def_mpf_constant(sqrtpi_fixed) |
|
mpf_ln_sqrt2pi = def_mpf_constant(ln_sqrt2pi_fixed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mpf_pow(s, t, prec, rnd=round_fast): |
|
""" |
|
Compute s**t. Raises ComplexResult if s is negative and t is |
|
fractional. |
|
""" |
|
ssign, sman, sexp, sbc = s |
|
tsign, tman, texp, tbc = t |
|
if ssign and texp < 0: |
|
raise ComplexResult("negative number raised to a fractional power") |
|
if texp >= 0: |
|
return mpf_pow_int(s, (-1)**tsign * (tman<<texp), prec, rnd) |
|
|
|
if texp == -1: |
|
if tman == 1: |
|
if tsign: |
|
return mpf_div(fone, mpf_sqrt(s, prec+10, |
|
reciprocal_rnd[rnd]), prec, rnd) |
|
return mpf_sqrt(s, prec, rnd) |
|
else: |
|
if tsign: |
|
return mpf_pow_int(mpf_sqrt(s, prec+10, |
|
reciprocal_rnd[rnd]), -tman, prec, rnd) |
|
return mpf_pow_int(mpf_sqrt(s, prec+10, rnd), tman, prec, rnd) |
|
|
|
|
|
c = mpf_log(s, prec+10, rnd) |
|
return mpf_exp(mpf_mul(t, c), prec, rnd) |
|
|
|
def int_pow_fixed(y, n, prec): |
|
"""n-th power of a fixed point number with precision prec |
|
|
|
Returns the power in the form man, exp, |
|
man * 2**exp ~= y**n |
|
""" |
|
if n == 2: |
|
return (y*y), 0 |
|
bc = bitcount(y) |
|
exp = 0 |
|
workprec = 2 * (prec + 4*bitcount(n) + 4) |
|
_, pm, pe, pbc = fone |
|
while 1: |
|
if n & 1: |
|
pm = pm*y |
|
pe = pe+exp |
|
pbc += bc - 2 |
|
pbc = pbc + bctable[int(pm >> pbc)] |
|
if pbc > workprec: |
|
pm = pm >> (pbc-workprec) |
|
pe += pbc - workprec |
|
pbc = workprec |
|
n -= 1 |
|
if not n: |
|
break |
|
y = y*y |
|
exp = exp+exp |
|
bc = bc + bc - 2 |
|
bc = bc + bctable[int(y >> bc)] |
|
if bc > workprec: |
|
y = y >> (bc-workprec) |
|
exp += bc - workprec |
|
bc = workprec |
|
n = n // 2 |
|
return pm, pe |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def nthroot_fixed(y, n, prec, exp1): |
|
start = 50 |
|
try: |
|
y1 = rshift(y, prec - n*start) |
|
r = MPZ(int(y1**(1.0/n))) |
|
except OverflowError: |
|
y1 = from_int(y1, start) |
|
fn = from_int(n) |
|
fn = mpf_rdiv_int(1, fn, start) |
|
r = mpf_pow(y1, fn, start) |
|
r = to_int(r) |
|
extra = 10 |
|
extra1 = n |
|
prevp = start |
|
for p in giant_steps(start, prec+extra): |
|
pm, pe = int_pow_fixed(r, n-1, prevp) |
|
r2 = rshift(pm, (n-1)*prevp - p - pe - extra1) |
|
B = lshift(y, 2*p-prec+extra1)//r2 |
|
r = (B + (n-1) * lshift(r, p-prevp))//n |
|
prevp = p |
|
return r |
|
|
|
def mpf_nthroot(s, n, prec, rnd=round_fast): |
|
"""nth-root of a positive number |
|
|
|
Use the Newton method when faster, otherwise use x**(1/n) |
|
""" |
|
sign, man, exp, bc = s |
|
if sign: |
|
raise ComplexResult("nth root of a negative number") |
|
if not man: |
|
if s == fnan: |
|
return fnan |
|
if s == fzero: |
|
if n > 0: |
|
return fzero |
|
if n == 0: |
|
return fone |
|
return finf |
|
|
|
if not n: |
|
return fnan |
|
if n < 0: |
|
return fzero |
|
return finf |
|
flag_inverse = False |
|
if n < 2: |
|
if n == 0: |
|
return fone |
|
if n == 1: |
|
return mpf_pos(s, prec, rnd) |
|
if n == -1: |
|
return mpf_div(fone, s, prec, rnd) |
|
|
|
rnd = reciprocal_rnd[rnd] |
|
flag_inverse = True |
|
extra_inverse = 5 |
|
prec += extra_inverse |
|
n = -n |
|
if n > 20 and (n >= 20000 or prec < int(233 + 28.3 * n**0.62)): |
|
prec2 = prec + 10 |
|
fn = from_int(n) |
|
nth = mpf_rdiv_int(1, fn, prec2) |
|
r = mpf_pow(s, nth, prec2, rnd) |
|
s = normalize(r[0], r[1], r[2], r[3], prec, rnd) |
|
if flag_inverse: |
|
return mpf_div(fone, s, prec-extra_inverse, rnd) |
|
else: |
|
return s |
|
|
|
prec2 = prec + 2*n - (prec%n) |
|
|
|
|
|
if n > 10: |
|
prec2 += prec2//10 |
|
prec2 = prec2 - prec2%n |
|
|
|
shift = bc - prec2 |
|
|
|
sign1 = 0 |
|
es = exp+shift |
|
if es < 0: |
|
sign1 = 1 |
|
es = -es |
|
if sign1: |
|
shift += es%n |
|
else: |
|
shift -= es%n |
|
man = rshift(man, shift) |
|
extra = 10 |
|
exp1 = ((exp+shift-(n-1)*prec2)//n) - extra |
|
rnd_shift = 0 |
|
if flag_inverse: |
|
if rnd == 'u' or rnd == 'c': |
|
rnd_shift = 1 |
|
else: |
|
if rnd == 'd' or rnd == 'f': |
|
rnd_shift = 1 |
|
man = nthroot_fixed(man+rnd_shift, n, prec2, exp1) |
|
s = from_man_exp(man, exp1, prec, rnd) |
|
if flag_inverse: |
|
return mpf_div(fone, s, prec-extra_inverse, rnd) |
|
else: |
|
return s |
|
|
|
def mpf_cbrt(s, prec, rnd=round_fast): |
|
"""cubic root of a positive number""" |
|
return mpf_nthroot(s, 3, prec, rnd) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def log_int_fixed(n, prec, ln2=None): |
|
""" |
|
Fast computation of log(n), caching the value for small n, |
|
intended for zeta sums. |
|
""" |
|
if n in log_int_cache: |
|
value, vprec = log_int_cache[n] |
|
if vprec >= prec: |
|
return value >> (vprec - prec) |
|
wp = prec + 10 |
|
if wp <= LOG_TAYLOR_SHIFT: |
|
if ln2 is None: |
|
ln2 = ln2_fixed(wp) |
|
r = bitcount(n) |
|
x = n << (wp-r) |
|
v = log_taylor_cached(x, wp) + r*ln2 |
|
else: |
|
v = to_fixed(mpf_log(from_int(n), wp+5), wp) |
|
if n < MAX_LOG_INT_CACHE: |
|
log_int_cache[n] = (v, wp) |
|
return v >> (wp-prec) |
|
|
|
def agm_fixed(a, b, prec): |
|
""" |
|
Fixed-point computation of agm(a,b), assuming |
|
a, b both close to unit magnitude. |
|
""" |
|
i = 0 |
|
while 1: |
|
anew = (a+b)>>1 |
|
if i > 4 and abs(a-anew) < 8: |
|
return a |
|
b = isqrt_fast(a*b) |
|
a = anew |
|
i += 1 |
|
return a |
|
|
|
def log_agm(x, prec): |
|
""" |
|
Fixed-point computation of -log(x) = log(1/x), suitable |
|
for large precision. It is required that 0 < x < 1. The |
|
algorithm used is the Sasaki-Kanada formula |
|
|
|
-log(x) = pi/agm(theta2(x)^2,theta3(x)^2). [1] |
|
|
|
For faster convergence in the theta functions, x should |
|
be chosen closer to 0. |
|
|
|
Guard bits must be added by the caller. |
|
|
|
HYPOTHESIS: if x = 2^(-n), n bits need to be added to |
|
account for the truncation to a fixed-point number, |
|
and this is the only significant cancellation error. |
|
|
|
The number of bits lost to roundoff is small and can be |
|
considered constant. |
|
|
|
[1] Richard P. Brent, "Fast Algorithms for High-Precision |
|
Computation of Elementary Functions (extended abstract)", |
|
http://wwwmaths.anu.edu.au/~brent/pd/RNC7-Brent.pdf |
|
|
|
""" |
|
x2 = (x*x) >> prec |
|
|
|
s = a = b = x2 |
|
while a: |
|
b = (b*x2) >> prec |
|
a = (a*b) >> prec |
|
s += a |
|
s += (MPZ_ONE<<prec) |
|
s = (s*s)>>(prec-2) |
|
s = (s*isqrt_fast(x<<prec))>>prec |
|
|
|
t = a = b = x |
|
while a: |
|
b = (b*x2) >> prec |
|
a = (a*b) >> prec |
|
t += a |
|
t = (MPZ_ONE<<prec) + (t<<1) |
|
t = (t*t)>>prec |
|
|
|
p = agm_fixed(s, t, prec) |
|
return (pi_fixed(prec) << prec) // p |
|
|
|
def log_taylor(x, prec, r=0): |
|
""" |
|
Fixed-point calculation of log(x). It is assumed that x is close |
|
enough to 1 for the Taylor series to converge quickly. Convergence |
|
can be improved by specifying r > 0 to compute |
|
log(x^(1/2^r))*2^r, at the cost of performing r square roots. |
|
|
|
The caller must provide sufficient guard bits. |
|
""" |
|
for i in xrange(r): |
|
x = isqrt_fast(x<<prec) |
|
one = MPZ_ONE << prec |
|
v = ((x-one)<<prec)//(x+one) |
|
sign = v < 0 |
|
if sign: |
|
v = -v |
|
v2 = (v*v) >> prec |
|
v4 = (v2*v2) >> prec |
|
s0 = v |
|
s1 = v//3 |
|
v = (v*v4) >> prec |
|
k = 5 |
|
while v: |
|
s0 += v // k |
|
k += 2 |
|
s1 += v // k |
|
v = (v*v4) >> prec |
|
k += 2 |
|
s1 = (s1*v2) >> prec |
|
s = (s0+s1) << (1+r) |
|
if sign: |
|
return -s |
|
return s |
|
|
|
def log_taylor_cached(x, prec): |
|
""" |
|
Fixed-point computation of log(x), assuming x in (0.5, 2) |
|
and prec <= LOG_TAYLOR_PREC. |
|
""" |
|
n = x >> (prec-LOG_TAYLOR_SHIFT) |
|
cached_prec = cache_prec_steps[prec] |
|
dprec = cached_prec - prec |
|
if (n, cached_prec) in log_taylor_cache: |
|
a, log_a = log_taylor_cache[n, cached_prec] |
|
else: |
|
a = n << (cached_prec - LOG_TAYLOR_SHIFT) |
|
log_a = log_taylor(a, cached_prec, 8) |
|
log_taylor_cache[n, cached_prec] = (a, log_a) |
|
a >>= dprec |
|
log_a >>= dprec |
|
u = ((x - a) << prec) // a |
|
v = (u << prec) // ((MPZ_TWO << prec) + u) |
|
v2 = (v*v) >> prec |
|
v4 = (v2*v2) >> prec |
|
s0 = v |
|
s1 = v//3 |
|
v = (v*v4) >> prec |
|
k = 5 |
|
while v: |
|
s0 += v//k |
|
k += 2 |
|
s1 += v//k |
|
v = (v*v4) >> prec |
|
k += 2 |
|
s1 = (s1*v2) >> prec |
|
s = (s0+s1) << 1 |
|
return log_a + s |
|
|
|
def mpf_log(x, prec, rnd=round_fast): |
|
""" |
|
Compute the natural logarithm of the mpf value x. If x is negative, |
|
ComplexResult is raised. |
|
""" |
|
sign, man, exp, bc = x |
|
|
|
|
|
if not man: |
|
if x == fzero: return fninf |
|
if x == finf: return finf |
|
if x == fnan: return fnan |
|
if sign: |
|
raise ComplexResult("logarithm of a negative number") |
|
wp = prec + 20 |
|
|
|
|
|
|
|
if man == 1: |
|
if not exp: |
|
return fzero |
|
return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd) |
|
mag = exp+bc |
|
abs_mag = abs(mag) |
|
|
|
|
|
|
|
|
|
|
|
if abs_mag <= 1: |
|
|
|
tsign = 1-abs_mag |
|
if tsign: |
|
tman = (MPZ_ONE<<bc) - man |
|
else: |
|
tman = man - (MPZ_ONE<<(bc-1)) |
|
tbc = bitcount(tman) |
|
cancellation = bc - tbc |
|
if cancellation > wp: |
|
t = normalize(tsign, tman, abs_mag-bc, tbc, tbc, 'n') |
|
return mpf_perturb(t, tsign, prec, rnd) |
|
else: |
|
wp += cancellation |
|
|
|
|
|
|
|
|
|
|
|
|
|
if abs_mag > 10000: |
|
if bitcount(abs_mag) > wp: |
|
return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if wp <= LOG_TAYLOR_PREC: |
|
m = log_taylor_cached(lshift(man, wp-bc), wp) |
|
if mag: |
|
m += mag*ln2_fixed(wp) |
|
else: |
|
optimal_mag = -wp//LOG_AGM_MAG_PREC_RATIO |
|
n = optimal_mag - mag |
|
x = mpf_shift(x, n) |
|
wp += (-optimal_mag) |
|
m = -log_agm(to_fixed(x, wp), wp) |
|
m -= n*ln2_fixed(wp) |
|
return from_man_exp(m, -wp, prec, rnd) |
|
|
|
def mpf_log_hypot(a, b, prec, rnd): |
|
""" |
|
Computes log(sqrt(a^2+b^2)) accurately. |
|
""" |
|
|
|
if not b[1]: |
|
a, b = b, a |
|
|
|
if not a[1]: |
|
|
|
if not b[1]: |
|
if a == b == fzero: |
|
return fninf |
|
if fnan in (a, b): |
|
return fnan |
|
|
|
return finf |
|
|
|
if a == fzero: |
|
|
|
return mpf_log(mpf_abs(b), prec, rnd) |
|
if a == fnan: |
|
return fnan |
|
return finf |
|
|
|
a2 = mpf_mul(a,a) |
|
b2 = mpf_mul(b,b) |
|
extra = 20 |
|
|
|
h2 = mpf_add(a2, b2, prec+extra) |
|
cancelled = mpf_add(h2, fnone, 10) |
|
mag_cancelled = cancelled[2]+cancelled[3] |
|
|
|
|
|
|
|
if cancelled == fzero or mag_cancelled < -extra//2: |
|
h2 = mpf_add(a2, b2, prec+extra-min(a2[2],b2[2])) |
|
return mpf_shift(mpf_log(h2, prec, rnd), -1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def atan_newton(x, prec): |
|
if prec >= 100: |
|
r = math.atan(int((x>>(prec-53)))/2.0**53) |
|
else: |
|
r = math.atan(int(x)/2.0**prec) |
|
prevp = 50 |
|
r = MPZ(int(r * 2.0**53) >> (53-prevp)) |
|
extra_p = 50 |
|
for wp in giant_steps(prevp, prec): |
|
wp += extra_p |
|
r = r << (wp-prevp) |
|
cos, sin = cos_sin_fixed(r, wp) |
|
tan = (sin << wp) // cos |
|
a = ((tan-rshift(x, prec-wp)) << wp) // ((MPZ_ONE<<wp) + ((tan**2)>>wp)) |
|
r = r - a |
|
prevp = wp |
|
return rshift(r, prevp-prec) |
|
|
|
def atan_taylor_get_cached(n, prec): |
|
|
|
|
|
|
|
|
|
prec2 = (1<<(bitcount(prec-1))) + 20 |
|
dprec = prec2 - prec |
|
if (n, prec2) in atan_taylor_cache: |
|
a, atan_a = atan_taylor_cache[n, prec2] |
|
else: |
|
a = n << (prec2 - ATAN_TAYLOR_SHIFT) |
|
atan_a = atan_newton(a, prec2) |
|
atan_taylor_cache[n, prec2] = (a, atan_a) |
|
return (a >> dprec), (atan_a >> dprec) |
|
|
|
def atan_taylor(x, prec): |
|
n = (x >> (prec-ATAN_TAYLOR_SHIFT)) |
|
a, atan_a = atan_taylor_get_cached(n, prec) |
|
d = x - a |
|
s0 = v = (d << prec) // ((a**2 >> prec) + (a*d >> prec) + (MPZ_ONE << prec)) |
|
v2 = (v**2 >> prec) |
|
v4 = (v2 * v2) >> prec |
|
s1 = v//3 |
|
v = (v * v4) >> prec |
|
k = 5 |
|
while v: |
|
s0 += v // k |
|
k += 2 |
|
s1 += v // k |
|
v = (v * v4) >> prec |
|
k += 2 |
|
s1 = (s1 * v2) >> prec |
|
s = s0 - s1 |
|
return atan_a + s |
|
|
|
def atan_inf(sign, prec, rnd): |
|
if not sign: |
|
return mpf_shift(mpf_pi(prec, rnd), -1) |
|
return mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1)) |
|
|
|
def mpf_atan(x, prec, rnd=round_fast): |
|
sign, man, exp, bc = x |
|
if not man: |
|
if x == fzero: return fzero |
|
if x == finf: return atan_inf(0, prec, rnd) |
|
if x == fninf: return atan_inf(1, prec, rnd) |
|
return fnan |
|
mag = exp + bc |
|
|
|
if mag > prec+20: |
|
return atan_inf(sign, prec, rnd) |
|
|
|
if -mag > prec+20: |
|
return mpf_perturb(x, 1-sign, prec, rnd) |
|
wp = prec + 30 + abs(mag) |
|
|
|
if mag >= 2: |
|
x = mpf_rdiv_int(1, x, wp) |
|
reciprocal = True |
|
else: |
|
reciprocal = False |
|
t = to_fixed(x, wp) |
|
if sign: |
|
t = -t |
|
if wp < ATAN_TAYLOR_PREC: |
|
a = atan_taylor(t, wp) |
|
else: |
|
a = atan_newton(t, wp) |
|
if reciprocal: |
|
a = ((pi_fixed(wp)>>1)+1) - a |
|
if sign: |
|
a = -a |
|
return from_man_exp(a, -wp, prec, rnd) |
|
|
|
|
|
def mpf_atan2(y, x, prec, rnd=round_fast): |
|
xsign, xman, xexp, xbc = x |
|
ysign, yman, yexp, ybc = y |
|
if not yman: |
|
if y == fzero and x != fnan: |
|
if mpf_sign(x) >= 0: |
|
return fzero |
|
return mpf_pi(prec, rnd) |
|
if y in (finf, fninf): |
|
if x in (finf, fninf): |
|
return fnan |
|
|
|
if y == finf: |
|
return mpf_shift(mpf_pi(prec, rnd), -1) |
|
|
|
return mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1)) |
|
return fnan |
|
if ysign: |
|
return mpf_neg(mpf_atan2(mpf_neg(y), x, prec, negative_rnd[rnd])) |
|
if not xman: |
|
if x == fnan: |
|
return fnan |
|
if x == finf: |
|
return fzero |
|
if x == fninf: |
|
return mpf_pi(prec, rnd) |
|
if y == fzero: |
|
return fzero |
|
return mpf_shift(mpf_pi(prec, rnd), -1) |
|
tquo = mpf_atan(mpf_div(y, x, prec+4), prec+4) |
|
if xsign: |
|
return mpf_add(mpf_pi(prec+4), tquo, prec, rnd) |
|
else: |
|
return mpf_pos(tquo, prec, rnd) |
|
|
|
def mpf_asin(x, prec, rnd=round_fast): |
|
sign, man, exp, bc = x |
|
if bc+exp > 0 and x not in (fone, fnone): |
|
raise ComplexResult("asin(x) is real only for -1 <= x <= 1") |
|
|
|
wp = prec + 15 |
|
a = mpf_mul(x, x) |
|
b = mpf_add(fone, mpf_sqrt(mpf_sub(fone, a, wp), wp), wp) |
|
c = mpf_div(x, b, wp) |
|
return mpf_shift(mpf_atan(c, prec, rnd), 1) |
|
|
|
def mpf_acos(x, prec, rnd=round_fast): |
|
|
|
sign, man, exp, bc = x |
|
if bc + exp > 0: |
|
if x not in (fone, fnone): |
|
raise ComplexResult("acos(x) is real only for -1 <= x <= 1") |
|
if x == fnone: |
|
return mpf_pi(prec, rnd) |
|
wp = prec + 15 |
|
a = mpf_mul(x, x) |
|
b = mpf_sqrt(mpf_sub(fone, a, wp), wp) |
|
c = mpf_div(b, mpf_add(fone, x, wp), wp) |
|
return mpf_shift(mpf_atan(c, prec, rnd), 1) |
|
|
|
def mpf_asinh(x, prec, rnd=round_fast): |
|
wp = prec + 20 |
|
sign, man, exp, bc = x |
|
mag = exp+bc |
|
if mag < -8: |
|
if mag < -wp: |
|
return mpf_perturb(x, 1-sign, prec, rnd) |
|
wp += (-mag) |
|
|
|
|
|
q = mpf_sqrt(mpf_add(mpf_mul(x, x), fone, wp), wp) |
|
q = mpf_add(mpf_abs(x), q, wp) |
|
if sign: |
|
return mpf_neg(mpf_log(q, prec, negative_rnd[rnd])) |
|
else: |
|
return mpf_log(q, prec, rnd) |
|
|
|
def mpf_acosh(x, prec, rnd=round_fast): |
|
|
|
wp = prec + 15 |
|
if mpf_cmp(x, fone) == -1: |
|
raise ComplexResult("acosh(x) is real only for x >= 1") |
|
q = mpf_sqrt(mpf_add(mpf_mul(x,x), fnone, wp), wp) |
|
return mpf_log(mpf_add(x, q, wp), prec, rnd) |
|
|
|
def mpf_atanh(x, prec, rnd=round_fast): |
|
|
|
sign, man, exp, bc = x |
|
if (not man) and exp: |
|
if x in (fzero, fnan): |
|
return x |
|
raise ComplexResult("atanh(x) is real only for -1 <= x <= 1") |
|
mag = bc + exp |
|
if mag > 0: |
|
if mag == 1 and man == 1: |
|
return [finf, fninf][sign] |
|
raise ComplexResult("atanh(x) is real only for -1 <= x <= 1") |
|
wp = prec + 15 |
|
if mag < -8: |
|
if mag < -wp: |
|
return mpf_perturb(x, sign, prec, rnd) |
|
wp += (-mag) |
|
a = mpf_add(x, fone, wp) |
|
b = mpf_sub(fone, x, wp) |
|
return mpf_shift(mpf_log(mpf_div(a, b, wp), prec, rnd), -1) |
|
|
|
def mpf_fibonacci(x, prec, rnd=round_fast): |
|
sign, man, exp, bc = x |
|
if not man: |
|
if x == fninf: |
|
return fnan |
|
return x |
|
|
|
size = abs(exp+bc) |
|
if exp >= 0: |
|
|
|
if size < 10 or size <= bitcount(prec): |
|
return from_int(ifib(to_int(x)), prec, rnd) |
|
|
|
wp = prec + size + 20 |
|
a = mpf_phi(wp) |
|
b = mpf_add(mpf_shift(a, 1), fnone, wp) |
|
u = mpf_pow(a, x, wp) |
|
v = mpf_cos_pi(x, wp) |
|
v = mpf_div(v, u, wp) |
|
u = mpf_sub(u, v, wp) |
|
u = mpf_div(u, b, prec, rnd) |
|
return u |
|
|
|
|
|
|
|
|
|
|
|
|
|
def exponential_series(x, prec, type=0): |
|
""" |
|
Taylor series for cosh/sinh or cos/sin. |
|
|
|
type = 0 -- returns exp(x) (slightly faster than cosh+sinh) |
|
type = 1 -- returns (cosh(x), sinh(x)) |
|
type = 2 -- returns (cos(x), sin(x)) |
|
""" |
|
if x < 0: |
|
x = -x |
|
sign = 1 |
|
else: |
|
sign = 0 |
|
r = int(0.5*prec**0.5) |
|
xmag = bitcount(x) - prec |
|
r = max(0, xmag + r) |
|
extra = 10 + 2*max(r,-xmag) |
|
wp = prec + extra |
|
x <<= (extra - r) |
|
one = MPZ_ONE << wp |
|
alt = (type == 2) |
|
if prec < EXP_SERIES_U_CUTOFF: |
|
x2 = a = (x*x) >> wp |
|
x4 = (x2*x2) >> wp |
|
s0 = s1 = MPZ_ZERO |
|
k = 2 |
|
while a: |
|
a //= (k-1)*k; s0 += a; k += 2 |
|
a //= (k-1)*k; s1 += a; k += 2 |
|
a = (a*x4) >> wp |
|
s1 = (x2*s1) >> wp |
|
if alt: |
|
c = s1 - s0 + one |
|
else: |
|
c = s1 + s0 + one |
|
else: |
|
u = int(0.3*prec**0.35) |
|
x2 = a = (x*x) >> wp |
|
xpowers = [one, x2] |
|
for i in xrange(1, u): |
|
xpowers.append((xpowers[-1]*x2)>>wp) |
|
sums = [MPZ_ZERO] * u |
|
k = 2 |
|
while a: |
|
for i in xrange(u): |
|
a //= (k-1)*k |
|
if alt and k & 2: sums[i] -= a |
|
else: sums[i] += a |
|
k += 2 |
|
a = (a*xpowers[-1]) >> wp |
|
for i in xrange(1, u): |
|
sums[i] = (sums[i]*xpowers[i]) >> wp |
|
c = sum(sums) + one |
|
if type == 0: |
|
s = isqrt_fast(c*c - (one<<wp)) |
|
if sign: |
|
v = c - s |
|
else: |
|
v = c + s |
|
for i in xrange(r): |
|
v = (v*v) >> wp |
|
return v >> extra |
|
else: |
|
|
|
|
|
|
|
pshift = wp-1 |
|
for i in xrange(r): |
|
c = ((c*c) >> pshift) - one |
|
|
|
s = isqrt_fast(abs((one<<wp) - c*c)) |
|
if sign: |
|
s = -s |
|
return (c>>extra), (s>>extra) |
|
|
|
def exp_basecase(x, prec): |
|
""" |
|
Compute exp(x) as a fixed-point number. Works for any x, |
|
but for speed should have |x| < 1. For an arbitrary number, |
|
use exp(x) = exp(x-m*log(2)) * 2^m where m = floor(x/log(2)). |
|
""" |
|
if prec > EXP_COSH_CUTOFF: |
|
return exponential_series(x, prec, 0) |
|
r = int(prec**0.5) |
|
prec += r |
|
s0 = s1 = (MPZ_ONE << prec) |
|
k = 2 |
|
a = x2 = (x*x) >> prec |
|
while a: |
|
a //= k; s0 += a; k += 1 |
|
a //= k; s1 += a; k += 1 |
|
a = (a*x2) >> prec |
|
s1 = (s1*x) >> prec |
|
s = s0 + s1 |
|
u = r |
|
while r: |
|
s = (s*s) >> prec |
|
r -= 1 |
|
return s >> u |
|
|
|
def exp_expneg_basecase(x, prec): |
|
""" |
|
Computation of exp(x), exp(-x) |
|
""" |
|
if prec > EXP_COSH_CUTOFF: |
|
cosh, sinh = exponential_series(x, prec, 1) |
|
return cosh+sinh, cosh-sinh |
|
a = exp_basecase(x, prec) |
|
b = (MPZ_ONE << (prec+prec)) // a |
|
return a, b |
|
|
|
def cos_sin_basecase(x, prec): |
|
""" |
|
Compute cos(x), sin(x) as fixed-point numbers, assuming x |
|
in [0, pi/2). For an arbitrary number, use x' = x - m*(pi/2) |
|
where m = floor(x/(pi/2)) along with quarter-period symmetries. |
|
""" |
|
if prec > COS_SIN_CACHE_PREC: |
|
return exponential_series(x, prec, 2) |
|
precs = prec - COS_SIN_CACHE_STEP |
|
t = x >> precs |
|
n = int(t) |
|
if n not in cos_sin_cache: |
|
w = t<<(10+COS_SIN_CACHE_PREC-COS_SIN_CACHE_STEP) |
|
cos_t, sin_t = exponential_series(w, 10+COS_SIN_CACHE_PREC, 2) |
|
cos_sin_cache[n] = (cos_t>>10), (sin_t>>10) |
|
cos_t, sin_t = cos_sin_cache[n] |
|
offset = COS_SIN_CACHE_PREC - prec |
|
cos_t >>= offset |
|
sin_t >>= offset |
|
x -= t << precs |
|
cos = MPZ_ONE << prec |
|
sin = x |
|
k = 2 |
|
a = -((x*x) >> prec) |
|
while a: |
|
a //= k; cos += a; k += 1; a = (a*x) >> prec |
|
a //= k; sin += a; k += 1; a = -((a*x) >> prec) |
|
return ((cos*cos_t-sin*sin_t) >> prec), ((sin*cos_t+cos*sin_t) >> prec) |
|
|
|
def mpf_exp(x, prec, rnd=round_fast): |
|
sign, man, exp, bc = x |
|
if man: |
|
mag = bc + exp |
|
wp = prec + 14 |
|
if sign: |
|
man = -man |
|
|
|
if prec > 600 and exp >= 0: |
|
|
|
e = mpf_e(wp+int(1.45*mag)) |
|
return mpf_pow_int(e, man<<exp, prec, rnd) |
|
if mag < -wp: |
|
return mpf_perturb(fone, sign, prec, rnd) |
|
|
|
if mag > 1: |
|
|
|
|
|
|
|
wpmod = wp + mag |
|
offset = exp + wpmod |
|
if offset >= 0: |
|
t = man << offset |
|
else: |
|
t = man >> (-offset) |
|
lg2 = ln2_fixed(wpmod) |
|
n, t = divmod(t, lg2) |
|
n = int(n) |
|
t >>= mag |
|
else: |
|
offset = exp + wp |
|
if offset >= 0: |
|
t = man << offset |
|
else: |
|
t = man >> (-offset) |
|
n = 0 |
|
man = exp_basecase(t, wp) |
|
return from_man_exp(man, n-wp, prec, rnd) |
|
if not exp: |
|
return fone |
|
if x == fninf: |
|
return fzero |
|
return x |
|
|
|
|
|
def mpf_cosh_sinh(x, prec, rnd=round_fast, tanh=0): |
|
"""Simultaneously compute (cosh(x), sinh(x)) for real x""" |
|
sign, man, exp, bc = x |
|
if (not man) and exp: |
|
if tanh: |
|
if x == finf: return fone |
|
if x == fninf: return fnone |
|
return fnan |
|
if x == finf: return (finf, finf) |
|
if x == fninf: return (finf, fninf) |
|
return fnan, fnan |
|
mag = exp+bc |
|
wp = prec+14 |
|
if mag < -4: |
|
|
|
if mag < -wp: |
|
if tanh: |
|
return mpf_perturb(x, 1-sign, prec, rnd) |
|
cosh = mpf_perturb(fone, 0, prec, rnd) |
|
sinh = mpf_perturb(x, sign, prec, rnd) |
|
return cosh, sinh |
|
|
|
wp += (-mag) |
|
|
|
if mag > 10: |
|
if 3*(1<<(mag-1)) > wp: |
|
|
|
if tanh: |
|
return mpf_perturb([fone,fnone][sign], 1-sign, prec, rnd) |
|
c = s = mpf_shift(mpf_exp(mpf_abs(x), prec, rnd), -1) |
|
if sign: |
|
s = mpf_neg(s) |
|
return c, s |
|
|
|
if mag > 1: |
|
wpmod = wp + mag |
|
offset = exp + wpmod |
|
if offset >= 0: |
|
t = man << offset |
|
else: |
|
t = man >> (-offset) |
|
lg2 = ln2_fixed(wpmod) |
|
n, t = divmod(t, lg2) |
|
n = int(n) |
|
t >>= mag |
|
else: |
|
offset = exp + wp |
|
if offset >= 0: |
|
t = man << offset |
|
else: |
|
t = man >> (-offset) |
|
n = 0 |
|
a, b = exp_expneg_basecase(t, wp) |
|
|
|
cosh = a + (b>>(2*n)) |
|
sinh = a - (b>>(2*n)) |
|
if sign: |
|
sinh = -sinh |
|
if tanh: |
|
man = (sinh << wp) // cosh |
|
return from_man_exp(man, -wp, prec, rnd) |
|
else: |
|
cosh = from_man_exp(cosh, n-wp-1, prec, rnd) |
|
sinh = from_man_exp(sinh, n-wp-1, prec, rnd) |
|
return cosh, sinh |
|
|
|
|
|
def mod_pi2(man, exp, mag, wp): |
|
|
|
if mag > 0: |
|
i = 0 |
|
while 1: |
|
cancellation_prec = 20 << i |
|
wpmod = wp + mag + cancellation_prec |
|
pi2 = pi_fixed(wpmod-1) |
|
pi4 = pi2 >> 1 |
|
offset = wpmod + exp |
|
if offset >= 0: |
|
t = man << offset |
|
else: |
|
t = man >> (-offset) |
|
n, y = divmod(t, pi2) |
|
if y > pi4: |
|
small = pi2 - y |
|
else: |
|
small = y |
|
if small >> (wp+mag-10): |
|
n = int(n) |
|
t = y >> mag |
|
wp = wpmod - mag |
|
break |
|
i += 1 |
|
else: |
|
wp += (-mag) |
|
offset = exp + wp |
|
if offset >= 0: |
|
t = man << offset |
|
else: |
|
t = man >> (-offset) |
|
n = 0 |
|
return t, n, wp |
|
|
|
|
|
def mpf_cos_sin(x, prec, rnd=round_fast, which=0, pi=False): |
|
""" |
|
which: |
|
0 -- return cos(x), sin(x) |
|
1 -- return cos(x) |
|
2 -- return sin(x) |
|
3 -- return tan(x) |
|
|
|
if pi=True, compute for pi*x |
|
""" |
|
sign, man, exp, bc = x |
|
if not man: |
|
if exp: |
|
c, s = fnan, fnan |
|
else: |
|
c, s = fone, fzero |
|
if which == 0: return c, s |
|
if which == 1: return c |
|
if which == 2: return s |
|
if which == 3: return s |
|
|
|
mag = bc + exp |
|
wp = prec + 10 |
|
|
|
|
|
if mag < 0: |
|
if mag < -wp: |
|
if pi: |
|
x = mpf_mul(x, mpf_pi(wp)) |
|
c = mpf_perturb(fone, 1, prec, rnd) |
|
s = mpf_perturb(x, 1-sign, prec, rnd) |
|
if which == 0: return c, s |
|
if which == 1: return c |
|
if which == 2: return s |
|
if which == 3: return mpf_perturb(x, sign, prec, rnd) |
|
if pi: |
|
if exp >= -1: |
|
if exp == -1: |
|
c = fzero |
|
s = (fone, fnone)[bool(man & 2) ^ sign] |
|
elif exp == 0: |
|
c, s = (fnone, fzero) |
|
else: |
|
c, s = (fone, fzero) |
|
if which == 0: return c, s |
|
if which == 1: return c |
|
if which == 2: return s |
|
if which == 3: return mpf_div(s, c, prec, rnd) |
|
|
|
n = ((man >> (-exp-2)) + 1) >> 1 |
|
man = man - (n << (-exp-1)) |
|
mag2 = bitcount(man) + exp |
|
wp = prec + 10 - mag2 |
|
offset = exp + wp |
|
if offset >= 0: |
|
t = man << offset |
|
else: |
|
t = man >> (-offset) |
|
t = (t*pi_fixed(wp)) >> wp |
|
else: |
|
t, n, wp = mod_pi2(man, exp, mag, wp) |
|
c, s = cos_sin_basecase(t, wp) |
|
m = n & 3 |
|
if m == 1: c, s = -s, c |
|
elif m == 2: c, s = -c, -s |
|
elif m == 3: c, s = s, -c |
|
if sign: |
|
s = -s |
|
if which == 0: |
|
c = from_man_exp(c, -wp, prec, rnd) |
|
s = from_man_exp(s, -wp, prec, rnd) |
|
return c, s |
|
if which == 1: |
|
return from_man_exp(c, -wp, prec, rnd) |
|
if which == 2: |
|
return from_man_exp(s, -wp, prec, rnd) |
|
if which == 3: |
|
return from_rational(s, c, prec, rnd) |
|
|
|
def mpf_cos(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 1) |
|
def mpf_sin(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 2) |
|
def mpf_tan(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 3) |
|
def mpf_cos_sin_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 0, 1) |
|
def mpf_cos_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 1, 1) |
|
def mpf_sin_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 2, 1) |
|
def mpf_cosh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd)[0] |
|
def mpf_sinh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd)[1] |
|
def mpf_tanh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd, tanh=1) |
|
|
|
|
|
|
|
|
|
def cos_sin_fixed(x, prec, pi2=None): |
|
if pi2 is None: |
|
pi2 = pi_fixed(prec-1) |
|
n, t = divmod(x, pi2) |
|
n = int(n) |
|
c, s = cos_sin_basecase(t, prec) |
|
m = n & 3 |
|
if m == 0: return c, s |
|
if m == 1: return -s, c |
|
if m == 2: return -c, -s |
|
if m == 3: return s, -c |
|
|
|
def exp_fixed(x, prec, ln2=None): |
|
if ln2 is None: |
|
ln2 = ln2_fixed(prec) |
|
n, t = divmod(x, ln2) |
|
n = int(n) |
|
v = exp_basecase(t, prec) |
|
if n >= 0: |
|
return v << n |
|
else: |
|
return v >> (-n) |
|
|
|
|
|
if BACKEND == 'sage': |
|
try: |
|
import sage.libs.mpmath.ext_libmp as _lbmp |
|
mpf_sqrt = _lbmp.mpf_sqrt |
|
mpf_exp = _lbmp.mpf_exp |
|
mpf_log = _lbmp.mpf_log |
|
mpf_cos = _lbmp.mpf_cos |
|
mpf_sin = _lbmp.mpf_sin |
|
mpf_pow = _lbmp.mpf_pow |
|
exp_fixed = _lbmp.exp_fixed |
|
cos_sin_fixed = _lbmp.cos_sin_fixed |
|
log_int_fixed = _lbmp.log_int_fixed |
|
except (ImportError, AttributeError): |
|
print("Warning: Sage imports in libelefun failed") |
|
|