DeepSeek-V3-split
/
inference
/.venv
/lib
/python3.10
/site-packages
/huggingface_hub
/repocard_data.py
import copy | |
from collections import defaultdict | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
from huggingface_hub.utils import logging, yaml_dump | |
logger = logging.get_logger(__name__) | |
class EvalResult: | |
""" | |
Flattened representation of individual evaluation results found in model-index of Model Cards. | |
For more information on the model-index spec, see https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1. | |
Args: | |
task_type (`str`): | |
The task identifier. Example: "image-classification". | |
dataset_type (`str`): | |
The dataset identifier. Example: "common_voice". Use dataset id from https://hf.co/datasets. | |
dataset_name (`str`): | |
A pretty name for the dataset. Example: "Common Voice (French)". | |
metric_type (`str`): | |
The metric identifier. Example: "wer". Use metric id from https://hf.co/metrics. | |
metric_value (`Any`): | |
The metric value. Example: 0.9 or "20.0 ± 1.2". | |
task_name (`str`, *optional*): | |
A pretty name for the task. Example: "Speech Recognition". | |
dataset_config (`str`, *optional*): | |
The name of the dataset configuration used in `load_dataset()`. | |
Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: | |
https://hf.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name | |
dataset_split (`str`, *optional*): | |
The split used in `load_dataset()`. Example: "test". | |
dataset_revision (`str`, *optional*): | |
The revision (AKA Git Sha) of the dataset used in `load_dataset()`. | |
Example: 5503434ddd753f426f4b38109466949a1217c2bb | |
dataset_args (`Dict[str, Any]`, *optional*): | |
The arguments passed during `Metric.compute()`. Example for `bleu`: `{"max_order": 4}` | |
metric_name (`str`, *optional*): | |
A pretty name for the metric. Example: "Test WER". | |
metric_config (`str`, *optional*): | |
The name of the metric configuration used in `load_metric()`. | |
Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`. | |
See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations | |
metric_args (`Dict[str, Any]`, *optional*): | |
The arguments passed during `Metric.compute()`. Example for `bleu`: max_order: 4 | |
verified (`bool`, *optional*): | |
Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set. | |
verify_token (`str`, *optional*): | |
A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. | |
source_name (`str`, *optional*): | |
The name of the source of the evaluation result. Example: "Open LLM Leaderboard". | |
source_url (`str`, *optional*): | |
The URL of the source of the evaluation result. Example: "https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard". | |
""" | |
# Required | |
# The task identifier | |
# Example: automatic-speech-recognition | |
task_type: str | |
# The dataset identifier | |
# Example: common_voice. Use dataset id from https://hf.co/datasets | |
dataset_type: str | |
# A pretty name for the dataset. | |
# Example: Common Voice (French) | |
dataset_name: str | |
# The metric identifier | |
# Example: wer. Use metric id from https://hf.co/metrics | |
metric_type: str | |
# Value of the metric. | |
# Example: 20.0 or "20.0 ± 1.2" | |
metric_value: Any | |
# Optional | |
# A pretty name for the task. | |
# Example: Speech Recognition | |
task_name: Optional[str] = None | |
# The name of the dataset configuration used in `load_dataset()`. | |
# Example: fr in `load_dataset("common_voice", "fr")`. | |
# See the `datasets` docs for more info: | |
# https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name | |
dataset_config: Optional[str] = None | |
# The split used in `load_dataset()`. | |
# Example: test | |
dataset_split: Optional[str] = None | |
# The revision (AKA Git Sha) of the dataset used in `load_dataset()`. | |
# Example: 5503434ddd753f426f4b38109466949a1217c2bb | |
dataset_revision: Optional[str] = None | |
# The arguments passed during `Metric.compute()`. | |
# Example for `bleu`: max_order: 4 | |
dataset_args: Optional[Dict[str, Any]] = None | |
# A pretty name for the metric. | |
# Example: Test WER | |
metric_name: Optional[str] = None | |
# The name of the metric configuration used in `load_metric()`. | |
# Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`. | |
# See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations | |
metric_config: Optional[str] = None | |
# The arguments passed during `Metric.compute()`. | |
# Example for `bleu`: max_order: 4 | |
metric_args: Optional[Dict[str, Any]] = None | |
# Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set. | |
verified: Optional[bool] = None | |
# A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. | |
verify_token: Optional[str] = None | |
# The name of the source of the evaluation result. | |
# Example: Open LLM Leaderboard | |
source_name: Optional[str] = None | |
# The URL of the source of the evaluation result. | |
# Example: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard | |
source_url: Optional[str] = None | |
def unique_identifier(self) -> tuple: | |
"""Returns a tuple that uniquely identifies this evaluation.""" | |
return ( | |
self.task_type, | |
self.dataset_type, | |
self.dataset_config, | |
self.dataset_split, | |
self.dataset_revision, | |
) | |
def is_equal_except_value(self, other: "EvalResult") -> bool: | |
""" | |
Return True if `self` and `other` describe exactly the same metric but with a | |
different value. | |
""" | |
for key, _ in self.__dict__.items(): | |
if key == "metric_value": | |
continue | |
# For metrics computed by Hugging Face's evaluation service, `verify_token` is derived from `metric_value`, | |
# so we exclude it here in the comparison. | |
if key != "verify_token" and getattr(self, key) != getattr(other, key): | |
return False | |
return True | |
def __post_init__(self) -> None: | |
if self.source_name is not None and self.source_url is None: | |
raise ValueError("If `source_name` is provided, `source_url` must also be provided.") | |
class CardData: | |
"""Structure containing metadata from a RepoCard. | |
[`CardData`] is the parent class of [`ModelCardData`] and [`DatasetCardData`]. | |
Metadata can be exported as a dictionary or YAML. Export can be customized to alter the representation of the data | |
(example: flatten evaluation results). `CardData` behaves as a dictionary (can get, pop, set values) but do not | |
inherit from `dict` to allow this export step. | |
""" | |
def __init__(self, ignore_metadata_errors: bool = False, **kwargs): | |
self.__dict__.update(kwargs) | |
def to_dict(self): | |
"""Converts CardData to a dict. | |
Returns: | |
`dict`: CardData represented as a dictionary ready to be dumped to a YAML | |
block for inclusion in a README.md file. | |
""" | |
data_dict = copy.deepcopy(self.__dict__) | |
self._to_dict(data_dict) | |
return {key: value for key, value in data_dict.items() if value is not None} | |
def _to_dict(self, data_dict): | |
"""Use this method in child classes to alter the dict representation of the data. Alter the dict in-place. | |
Args: | |
data_dict (`dict`): The raw dict representation of the card data. | |
""" | |
pass | |
def to_yaml(self, line_break=None, original_order: Optional[List[str]] = None) -> str: | |
"""Dumps CardData to a YAML block for inclusion in a README.md file. | |
Args: | |
line_break (str, *optional*): | |
The line break to use when dumping to yaml. | |
Returns: | |
`str`: CardData represented as a YAML block. | |
""" | |
if original_order: | |
self.__dict__ = { | |
k: self.__dict__[k] | |
for k in original_order + list(set(self.__dict__.keys()) - set(original_order)) | |
if k in self.__dict__ | |
} | |
return yaml_dump(self.to_dict(), sort_keys=False, line_break=line_break).strip() | |
def __repr__(self): | |
return repr(self.__dict__) | |
def __str__(self): | |
return self.to_yaml() | |
def get(self, key: str, default: Any = None) -> Any: | |
"""Get value for a given metadata key.""" | |
return self.__dict__.get(key, default) | |
def pop(self, key: str, default: Any = None) -> Any: | |
"""Pop value for a given metadata key.""" | |
return self.__dict__.pop(key, default) | |
def __getitem__(self, key: str) -> Any: | |
"""Get value for a given metadata key.""" | |
return self.__dict__[key] | |
def __setitem__(self, key: str, value: Any) -> None: | |
"""Set value for a given metadata key.""" | |
self.__dict__[key] = value | |
def __contains__(self, key: str) -> bool: | |
"""Check if a given metadata key is set.""" | |
return key in self.__dict__ | |
def __len__(self) -> int: | |
"""Return the number of metadata keys set.""" | |
return len(self.__dict__) | |
class ModelCardData(CardData): | |
"""Model Card Metadata that is used by Hugging Face Hub when included at the top of your README.md | |
Args: | |
base_model (`str` or `List[str]`, *optional*): | |
The identifier of the base model from which the model derives. This is applicable for example if your model is a | |
fine-tune or adapter of an existing model. The value must be the ID of a model on the Hub (or a list of IDs | |
if your model derives from multiple models). Defaults to None. | |
datasets (`Union[str, List[str]]`, *optional*): | |
Dataset or list of datasets that were used to train this model. Should be a dataset ID | |
found on https://hf.co/datasets. Defaults to None. | |
eval_results (`Union[List[EvalResult], EvalResult]`, *optional*): | |
List of `huggingface_hub.EvalResult` that define evaluation results of the model. If provided, | |
`model_name` is used to as a name on PapersWithCode's leaderboards. Defaults to `None`. | |
language (`Union[str, List[str]]`, *optional*): | |
Language of model's training data or metadata. It must be an ISO 639-1, 639-2 or | |
639-3 code (two/three letters), or a special value like "code", "multilingual". Defaults to `None`. | |
library_name (`str`, *optional*): | |
Name of library used by this model. Example: keras or any library from | |
https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/src/model-libraries.ts. | |
Defaults to None. | |
license (`str`, *optional*): | |
License of this model. Example: apache-2.0 or any license from | |
https://huggingface.co/docs/hub/repositories-licenses. Defaults to None. | |
license_name (`str`, *optional*): | |
Name of the license of this model. Defaults to None. To be used in conjunction with `license_link`. | |
Common licenses (Apache-2.0, MIT, CC-BY-SA-4.0) do not need a name. In that case, use `license` instead. | |
license_link (`str`, *optional*): | |
Link to the license of this model. Defaults to None. To be used in conjunction with `license_name`. | |
Common licenses (Apache-2.0, MIT, CC-BY-SA-4.0) do not need a link. In that case, use `license` instead. | |
metrics (`List[str]`, *optional*): | |
List of metrics used to evaluate this model. Should be a metric name that can be found | |
at https://hf.co/metrics. Example: 'accuracy'. Defaults to None. | |
model_name (`str`, *optional*): | |
A name for this model. It is used along with | |
`eval_results` to construct the `model-index` within the card's metadata. The name | |
you supply here is what will be used on PapersWithCode's leaderboards. If None is provided | |
then the repo name is used as a default. Defaults to None. | |
pipeline_tag (`str`, *optional*): | |
The pipeline tag associated with the model. Example: "text-classification". | |
tags (`List[str]`, *optional*): | |
List of tags to add to your model that can be used when filtering on the Hugging | |
Face Hub. Defaults to None. | |
ignore_metadata_errors (`str`): | |
If True, errors while parsing the metadata section will be ignored. Some information might be lost during | |
the process. Use it at your own risk. | |
kwargs (`dict`, *optional*): | |
Additional metadata that will be added to the model card. Defaults to None. | |
Example: | |
```python | |
>>> from huggingface_hub import ModelCardData | |
>>> card_data = ModelCardData( | |
... language="en", | |
... license="mit", | |
... library_name="timm", | |
... tags=['image-classification', 'resnet'], | |
... ) | |
>>> card_data.to_dict() | |
{'language': 'en', 'license': 'mit', 'library_name': 'timm', 'tags': ['image-classification', 'resnet']} | |
``` | |
""" | |
def __init__( | |
self, | |
*, | |
base_model: Optional[Union[str, List[str]]] = None, | |
datasets: Optional[Union[str, List[str]]] = None, | |
eval_results: Optional[List[EvalResult]] = None, | |
language: Optional[Union[str, List[str]]] = None, | |
library_name: Optional[str] = None, | |
license: Optional[str] = None, | |
license_name: Optional[str] = None, | |
license_link: Optional[str] = None, | |
metrics: Optional[List[str]] = None, | |
model_name: Optional[str] = None, | |
pipeline_tag: Optional[str] = None, | |
tags: Optional[List[str]] = None, | |
ignore_metadata_errors: bool = False, | |
**kwargs, | |
): | |
self.base_model = base_model | |
self.datasets = datasets | |
self.eval_results = eval_results | |
self.language = language | |
self.library_name = library_name | |
self.license = license | |
self.license_name = license_name | |
self.license_link = license_link | |
self.metrics = metrics | |
self.model_name = model_name | |
self.pipeline_tag = pipeline_tag | |
self.tags = _to_unique_list(tags) | |
model_index = kwargs.pop("model-index", None) | |
if model_index: | |
try: | |
model_name, eval_results = model_index_to_eval_results(model_index) | |
self.model_name = model_name | |
self.eval_results = eval_results | |
except (KeyError, TypeError) as error: | |
if ignore_metadata_errors: | |
logger.warning("Invalid model-index. Not loading eval results into CardData.") | |
else: | |
raise ValueError( | |
f"Invalid `model_index` in metadata cannot be parsed: {error.__class__} {error}. Pass" | |
" `ignore_metadata_errors=True` to ignore this error while loading a Model Card. Warning:" | |
" some information will be lost. Use it at your own risk." | |
) | |
super().__init__(**kwargs) | |
if self.eval_results: | |
if isinstance(self.eval_results, EvalResult): | |
self.eval_results = [self.eval_results] | |
if self.model_name is None: | |
raise ValueError("Passing `eval_results` requires `model_name` to be set.") | |
def _to_dict(self, data_dict): | |
"""Format the internal data dict. In this case, we convert eval results to a valid model index""" | |
if self.eval_results is not None: | |
data_dict["model-index"] = eval_results_to_model_index(self.model_name, self.eval_results) | |
del data_dict["eval_results"], data_dict["model_name"] | |
class DatasetCardData(CardData): | |
"""Dataset Card Metadata that is used by Hugging Face Hub when included at the top of your README.md | |
Args: | |
language (`List[str]`, *optional*): | |
Language of dataset's data or metadata. It must be an ISO 639-1, 639-2 or | |
639-3 code (two/three letters), or a special value like "code", "multilingual". | |
license (`Union[str, List[str]]`, *optional*): | |
License(s) of this dataset. Example: apache-2.0 or any license from | |
https://huggingface.co/docs/hub/repositories-licenses. | |
annotations_creators (`Union[str, List[str]]`, *optional*): | |
How the annotations for the dataset were created. | |
Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'no-annotation', 'other'. | |
language_creators (`Union[str, List[str]]`, *optional*): | |
How the text-based data in the dataset was created. | |
Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'other' | |
multilinguality (`Union[str, List[str]]`, *optional*): | |
Whether the dataset is multilingual. | |
Options are: 'monolingual', 'multilingual', 'translation', 'other'. | |
size_categories (`Union[str, List[str]]`, *optional*): | |
The number of examples in the dataset. Options are: 'n<1K', '1K<n<10K', '10K<n<100K', | |
'100K<n<1M', '1M<n<10M', '10M<n<100M', '100M<n<1B', '1B<n<10B', '10B<n<100B', '100B<n<1T', 'n>1T', and 'other'. | |
source_datasets (`List[str]]`, *optional*): | |
Indicates whether the dataset is an original dataset or extended from another existing dataset. | |
Options are: 'original' and 'extended'. | |
task_categories (`Union[str, List[str]]`, *optional*): | |
What categories of task does the dataset support? | |
task_ids (`Union[str, List[str]]`, *optional*): | |
What specific tasks does the dataset support? | |
paperswithcode_id (`str`, *optional*): | |
ID of the dataset on PapersWithCode. | |
pretty_name (`str`, *optional*): | |
A more human-readable name for the dataset. (ex. "Cats vs. Dogs") | |
train_eval_index (`Dict`, *optional*): | |
A dictionary that describes the necessary spec for doing evaluation on the Hub. | |
If not provided, it will be gathered from the 'train-eval-index' key of the kwargs. | |
config_names (`Union[str, List[str]]`, *optional*): | |
A list of the available dataset configs for the dataset. | |
""" | |
def __init__( | |
self, | |
*, | |
language: Optional[Union[str, List[str]]] = None, | |
license: Optional[Union[str, List[str]]] = None, | |
annotations_creators: Optional[Union[str, List[str]]] = None, | |
language_creators: Optional[Union[str, List[str]]] = None, | |
multilinguality: Optional[Union[str, List[str]]] = None, | |
size_categories: Optional[Union[str, List[str]]] = None, | |
source_datasets: Optional[List[str]] = None, | |
task_categories: Optional[Union[str, List[str]]] = None, | |
task_ids: Optional[Union[str, List[str]]] = None, | |
paperswithcode_id: Optional[str] = None, | |
pretty_name: Optional[str] = None, | |
train_eval_index: Optional[Dict] = None, | |
config_names: Optional[Union[str, List[str]]] = None, | |
ignore_metadata_errors: bool = False, | |
**kwargs, | |
): | |
self.annotations_creators = annotations_creators | |
self.language_creators = language_creators | |
self.language = language | |
self.license = license | |
self.multilinguality = multilinguality | |
self.size_categories = size_categories | |
self.source_datasets = source_datasets | |
self.task_categories = task_categories | |
self.task_ids = task_ids | |
self.paperswithcode_id = paperswithcode_id | |
self.pretty_name = pretty_name | |
self.config_names = config_names | |
# TODO - maybe handle this similarly to EvalResult? | |
self.train_eval_index = train_eval_index or kwargs.pop("train-eval-index", None) | |
super().__init__(**kwargs) | |
def _to_dict(self, data_dict): | |
data_dict["train-eval-index"] = data_dict.pop("train_eval_index") | |
class SpaceCardData(CardData): | |
"""Space Card Metadata that is used by Hugging Face Hub when included at the top of your README.md | |
To get an exhaustive reference of Spaces configuration, please visit https://huggingface.co/docs/hub/spaces-config-reference#spaces-configuration-reference. | |
Args: | |
title (`str`, *optional*) | |
Title of the Space. | |
sdk (`str`, *optional*) | |
SDK of the Space (one of `gradio`, `streamlit`, `docker`, or `static`). | |
sdk_version (`str`, *optional*) | |
Version of the used SDK (if Gradio/Streamlit sdk). | |
python_version (`str`, *optional*) | |
Python version used in the Space (if Gradio/Streamlit sdk). | |
app_file (`str`, *optional*) | |
Path to your main application file (which contains either gradio or streamlit Python code, or static html code). | |
Path is relative to the root of the repository. | |
app_port (`str`, *optional*) | |
Port on which your application is running. Used only if sdk is `docker`. | |
license (`str`, *optional*) | |
License of this model. Example: apache-2.0 or any license from | |
https://huggingface.co/docs/hub/repositories-licenses. | |
duplicated_from (`str`, *optional*) | |
ID of the original Space if this is a duplicated Space. | |
models (List[`str`], *optional*) | |
List of models related to this Space. Should be a dataset ID found on https://hf.co/models. | |
datasets (`List[str]`, *optional*) | |
List of datasets related to this Space. Should be a dataset ID found on https://hf.co/datasets. | |
tags (`List[str]`, *optional*) | |
List of tags to add to your Space that can be used when filtering on the Hub. | |
ignore_metadata_errors (`str`): | |
If True, errors while parsing the metadata section will be ignored. Some information might be lost during | |
the process. Use it at your own risk. | |
kwargs (`dict`, *optional*): | |
Additional metadata that will be added to the space card. | |
Example: | |
```python | |
>>> from huggingface_hub import SpaceCardData | |
>>> card_data = SpaceCardData( | |
... title="Dreambooth Training", | |
... license="mit", | |
... sdk="gradio", | |
... duplicated_from="multimodalart/dreambooth-training" | |
... ) | |
>>> card_data.to_dict() | |
{'title': 'Dreambooth Training', 'sdk': 'gradio', 'license': 'mit', 'duplicated_from': 'multimodalart/dreambooth-training'} | |
``` | |
""" | |
def __init__( | |
self, | |
*, | |
title: Optional[str] = None, | |
sdk: Optional[str] = None, | |
sdk_version: Optional[str] = None, | |
python_version: Optional[str] = None, | |
app_file: Optional[str] = None, | |
app_port: Optional[int] = None, | |
license: Optional[str] = None, | |
duplicated_from: Optional[str] = None, | |
models: Optional[List[str]] = None, | |
datasets: Optional[List[str]] = None, | |
tags: Optional[List[str]] = None, | |
ignore_metadata_errors: bool = False, | |
**kwargs, | |
): | |
self.title = title | |
self.sdk = sdk | |
self.sdk_version = sdk_version | |
self.python_version = python_version | |
self.app_file = app_file | |
self.app_port = app_port | |
self.license = license | |
self.duplicated_from = duplicated_from | |
self.models = models | |
self.datasets = datasets | |
self.tags = _to_unique_list(tags) | |
super().__init__(**kwargs) | |
def model_index_to_eval_results(model_index: List[Dict[str, Any]]) -> Tuple[str, List[EvalResult]]: | |
"""Takes in a model index and returns the model name and a list of `huggingface_hub.EvalResult` objects. | |
A detailed spec of the model index can be found here: | |
https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 | |
Args: | |
model_index (`List[Dict[str, Any]]`): | |
A model index data structure, likely coming from a README.md file on the | |
Hugging Face Hub. | |
Returns: | |
model_name (`str`): | |
The name of the model as found in the model index. This is used as the | |
identifier for the model on leaderboards like PapersWithCode. | |
eval_results (`List[EvalResult]`): | |
A list of `huggingface_hub.EvalResult` objects containing the metrics | |
reported in the provided model_index. | |
Example: | |
```python | |
>>> from huggingface_hub.repocard_data import model_index_to_eval_results | |
>>> # Define a minimal model index | |
>>> model_index = [ | |
... { | |
... "name": "my-cool-model", | |
... "results": [ | |
... { | |
... "task": { | |
... "type": "image-classification" | |
... }, | |
... "dataset": { | |
... "type": "beans", | |
... "name": "Beans" | |
... }, | |
... "metrics": [ | |
... { | |
... "type": "accuracy", | |
... "value": 0.9 | |
... } | |
... ] | |
... } | |
... ] | |
... } | |
... ] | |
>>> model_name, eval_results = model_index_to_eval_results(model_index) | |
>>> model_name | |
'my-cool-model' | |
>>> eval_results[0].task_type | |
'image-classification' | |
>>> eval_results[0].metric_type | |
'accuracy' | |
``` | |
""" | |
eval_results = [] | |
for elem in model_index: | |
name = elem["name"] | |
results = elem["results"] | |
for result in results: | |
task_type = result["task"]["type"] | |
task_name = result["task"].get("name") | |
dataset_type = result["dataset"]["type"] | |
dataset_name = result["dataset"]["name"] | |
dataset_config = result["dataset"].get("config") | |
dataset_split = result["dataset"].get("split") | |
dataset_revision = result["dataset"].get("revision") | |
dataset_args = result["dataset"].get("args") | |
source_name = result.get("source", {}).get("name") | |
source_url = result.get("source", {}).get("url") | |
for metric in result["metrics"]: | |
metric_type = metric["type"] | |
metric_value = metric["value"] | |
metric_name = metric.get("name") | |
metric_args = metric.get("args") | |
metric_config = metric.get("config") | |
verified = metric.get("verified") | |
verify_token = metric.get("verifyToken") | |
eval_result = EvalResult( | |
task_type=task_type, # Required | |
dataset_type=dataset_type, # Required | |
dataset_name=dataset_name, # Required | |
metric_type=metric_type, # Required | |
metric_value=metric_value, # Required | |
task_name=task_name, | |
dataset_config=dataset_config, | |
dataset_split=dataset_split, | |
dataset_revision=dataset_revision, | |
dataset_args=dataset_args, | |
metric_name=metric_name, | |
metric_args=metric_args, | |
metric_config=metric_config, | |
verified=verified, | |
verify_token=verify_token, | |
source_name=source_name, | |
source_url=source_url, | |
) | |
eval_results.append(eval_result) | |
return name, eval_results | |
def _remove_none(obj): | |
""" | |
Recursively remove `None` values from a dict. Borrowed from: https://stackoverflow.com/a/20558778 | |
""" | |
if isinstance(obj, (list, tuple, set)): | |
return type(obj)(_remove_none(x) for x in obj if x is not None) | |
elif isinstance(obj, dict): | |
return type(obj)((_remove_none(k), _remove_none(v)) for k, v in obj.items() if k is not None and v is not None) | |
else: | |
return obj | |
def eval_results_to_model_index(model_name: str, eval_results: List[EvalResult]) -> List[Dict[str, Any]]: | |
"""Takes in given model name and list of `huggingface_hub.EvalResult` and returns a | |
valid model-index that will be compatible with the format expected by the | |
Hugging Face Hub. | |
Args: | |
model_name (`str`): | |
Name of the model (ex. "my-cool-model"). This is used as the identifier | |
for the model on leaderboards like PapersWithCode. | |
eval_results (`List[EvalResult]`): | |
List of `huggingface_hub.EvalResult` objects containing the metrics to be | |
reported in the model-index. | |
Returns: | |
model_index (`List[Dict[str, Any]]`): The eval_results converted to a model-index. | |
Example: | |
```python | |
>>> from huggingface_hub.repocard_data import eval_results_to_model_index, EvalResult | |
>>> # Define minimal eval_results | |
>>> eval_results = [ | |
... EvalResult( | |
... task_type="image-classification", # Required | |
... dataset_type="beans", # Required | |
... dataset_name="Beans", # Required | |
... metric_type="accuracy", # Required | |
... metric_value=0.9, # Required | |
... ) | |
... ] | |
>>> eval_results_to_model_index("my-cool-model", eval_results) | |
[{'name': 'my-cool-model', 'results': [{'task': {'type': 'image-classification'}, 'dataset': {'name': 'Beans', 'type': 'beans'}, 'metrics': [{'type': 'accuracy', 'value': 0.9}]}]}] | |
``` | |
""" | |
# Metrics are reported on a unique task-and-dataset basis. | |
# Here, we make a map of those pairs and the associated EvalResults. | |
task_and_ds_types_map: Dict[Any, List[EvalResult]] = defaultdict(list) | |
for eval_result in eval_results: | |
task_and_ds_types_map[eval_result.unique_identifier].append(eval_result) | |
# Use the map from above to generate the model index data. | |
model_index_data = [] | |
for results in task_and_ds_types_map.values(): | |
# All items from `results` share same metadata | |
sample_result = results[0] | |
data = { | |
"task": { | |
"type": sample_result.task_type, | |
"name": sample_result.task_name, | |
}, | |
"dataset": { | |
"name": sample_result.dataset_name, | |
"type": sample_result.dataset_type, | |
"config": sample_result.dataset_config, | |
"split": sample_result.dataset_split, | |
"revision": sample_result.dataset_revision, | |
"args": sample_result.dataset_args, | |
}, | |
"metrics": [ | |
{ | |
"type": result.metric_type, | |
"value": result.metric_value, | |
"name": result.metric_name, | |
"config": result.metric_config, | |
"args": result.metric_args, | |
"verified": result.verified, | |
"verifyToken": result.verify_token, | |
} | |
for result in results | |
], | |
} | |
if sample_result.source_url is not None: | |
source = { | |
"url": sample_result.source_url, | |
} | |
if sample_result.source_name is not None: | |
source["name"] = sample_result.source_name | |
data["source"] = source | |
model_index_data.append(data) | |
# TODO - Check if there cases where this list is longer than one? | |
# Finally, the model index itself is list of dicts. | |
model_index = [ | |
{ | |
"name": model_name, | |
"results": model_index_data, | |
} | |
] | |
return _remove_none(model_index) | |
def _to_unique_list(tags: Optional[List[str]]) -> Optional[List[str]]: | |
if tags is None: | |
return tags | |
unique_tags = [] # make tags unique + keep order explicitly | |
for tag in tags: | |
if tag not in unique_tags: | |
unique_tags.append(tag) | |
return unique_tags | |