File size: 10,381 Bytes
eb00867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
"""
Array API Inspection namespace

This is the namespace for inspection functions as defined by the array API
standard. See
https://data-apis.org/array-api/latest/API_specification/inspection.html for
more details.

"""
from numpy._core import (
    dtype,
    bool,
    intp,
    int8,
    int16,
    int32,
    int64,
    uint8,
    uint16,
    uint32,
    uint64,
    float32,
    float64,
    complex64,
    complex128,
)


class __array_namespace_info__:
    """
    Get the array API inspection namespace for NumPy.

    The array API inspection namespace defines the following functions:

    - capabilities()
    - default_device()
    - default_dtypes()
    - dtypes()
    - devices()

    See
    https://data-apis.org/array-api/latest/API_specification/inspection.html
    for more details.

    Returns
    -------
    info : ModuleType
        The array API inspection namespace for NumPy.

    Examples
    --------
    >>> info = np.__array_namespace_info__()
    >>> info.default_dtypes()
    {'real floating': numpy.float64,
     'complex floating': numpy.complex128,
     'integral': numpy.int64,
     'indexing': numpy.int64}

    """

    __module__ = 'numpy'

    def capabilities(self):
        """
        Return a dictionary of array API library capabilities.

        The resulting dictionary has the following keys:

        - **"boolean indexing"**: boolean indicating whether an array library
          supports boolean indexing. Always ``True`` for NumPy.

        - **"data-dependent shapes"**: boolean indicating whether an array
          library supports data-dependent output shapes. Always ``True`` for
          NumPy.

        See
        https://data-apis.org/array-api/latest/API_specification/generated/array_api.info.capabilities.html
        for more details.

        See Also
        --------
        __array_namespace_info__.default_device,
        __array_namespace_info__.default_dtypes,
        __array_namespace_info__.dtypes,
        __array_namespace_info__.devices

        Returns
        -------
        capabilities : dict
            A dictionary of array API library capabilities.

        Examples
        --------
        >>> info = np.__array_namespace_info__()
        >>> info.capabilities()
        {'boolean indexing': True,
         'data-dependent shapes': True}

        """
        return {
            "boolean indexing": True,
            "data-dependent shapes": True,
            # 'max rank' will be part of the 2024.12 standard
            # "max rank": 64,
        }

    def default_device(self):
        """
        The default device used for new NumPy arrays.

        For NumPy, this always returns ``'cpu'``.

        See Also
        --------
        __array_namespace_info__.capabilities,
        __array_namespace_info__.default_dtypes,
        __array_namespace_info__.dtypes,
        __array_namespace_info__.devices

        Returns
        -------
        device : str
            The default device used for new NumPy arrays.

        Examples
        --------
        >>> info = np.__array_namespace_info__()
        >>> info.default_device()
        'cpu'

        """
        return "cpu"

    def default_dtypes(self, *, device=None):
        """
        The default data types used for new NumPy arrays.

        For NumPy, this always returns the following dictionary:

        - **"real floating"**: ``numpy.float64``
        - **"complex floating"**: ``numpy.complex128``
        - **"integral"**: ``numpy.intp``
        - **"indexing"**: ``numpy.intp``

        Parameters
        ----------
        device : str, optional
            The device to get the default data types for. For NumPy, only
            ``'cpu'`` is allowed.

        Returns
        -------
        dtypes : dict
            A dictionary describing the default data types used for new NumPy
            arrays.

        See Also
        --------
        __array_namespace_info__.capabilities,
        __array_namespace_info__.default_device,
        __array_namespace_info__.dtypes,
        __array_namespace_info__.devices

        Examples
        --------
        >>> info = np.__array_namespace_info__()
        >>> info.default_dtypes()
        {'real floating': numpy.float64,
         'complex floating': numpy.complex128,
         'integral': numpy.int64,
         'indexing': numpy.int64}

        """
        if device not in ["cpu", None]:
            raise ValueError(
                'Device not understood. Only "cpu" is allowed, but received:'
                f' {device}'
            )
        return {
            "real floating": dtype(float64),
            "complex floating": dtype(complex128),
            "integral": dtype(intp),
            "indexing": dtype(intp),
        }

    def dtypes(self, *, device=None, kind=None):
        """
        The array API data types supported by NumPy.

        Note that this function only returns data types that are defined by
        the array API.

        Parameters
        ----------
        device : str, optional
            The device to get the data types for. For NumPy, only ``'cpu'`` is
            allowed.
        kind : str or tuple of str, optional
            The kind of data types to return. If ``None``, all data types are
            returned. If a string, only data types of that kind are returned.
            If a tuple, a dictionary containing the union of the given kinds
            is returned. The following kinds are supported:

            - ``'bool'``: boolean data types (i.e., ``bool``).
            - ``'signed integer'``: signed integer data types (i.e., ``int8``,
              ``int16``, ``int32``, ``int64``).
            - ``'unsigned integer'``: unsigned integer data types (i.e.,
              ``uint8``, ``uint16``, ``uint32``, ``uint64``).
            - ``'integral'``: integer data types. Shorthand for ``('signed
              integer', 'unsigned integer')``.
            - ``'real floating'``: real-valued floating-point data types
              (i.e., ``float32``, ``float64``).
            - ``'complex floating'``: complex floating-point data types (i.e.,
              ``complex64``, ``complex128``).
            - ``'numeric'``: numeric data types. Shorthand for ``('integral',
              'real floating', 'complex floating')``.

        Returns
        -------
        dtypes : dict
            A dictionary mapping the names of data types to the corresponding
            NumPy data types.

        See Also
        --------
        __array_namespace_info__.capabilities,
        __array_namespace_info__.default_device,
        __array_namespace_info__.default_dtypes,
        __array_namespace_info__.devices

        Examples
        --------
        >>> info = np.__array_namespace_info__()
        >>> info.dtypes(kind='signed integer')
        {'int8': numpy.int8,
         'int16': numpy.int16,
         'int32': numpy.int32,
         'int64': numpy.int64}

        """
        if device not in ["cpu", None]:
            raise ValueError(
                'Device not understood. Only "cpu" is allowed, but received:'
                f' {device}'
            )
        if kind is None:
            return {
                "bool": dtype(bool),
                "int8": dtype(int8),
                "int16": dtype(int16),
                "int32": dtype(int32),
                "int64": dtype(int64),
                "uint8": dtype(uint8),
                "uint16": dtype(uint16),
                "uint32": dtype(uint32),
                "uint64": dtype(uint64),
                "float32": dtype(float32),
                "float64": dtype(float64),
                "complex64": dtype(complex64),
                "complex128": dtype(complex128),
            }
        if kind == "bool":
            return {"bool": bool}
        if kind == "signed integer":
            return {
                "int8": dtype(int8),
                "int16": dtype(int16),
                "int32": dtype(int32),
                "int64": dtype(int64),
            }
        if kind == "unsigned integer":
            return {
                "uint8": dtype(uint8),
                "uint16": dtype(uint16),
                "uint32": dtype(uint32),
                "uint64": dtype(uint64),
            }
        if kind == "integral":
            return {
                "int8": dtype(int8),
                "int16": dtype(int16),
                "int32": dtype(int32),
                "int64": dtype(int64),
                "uint8": dtype(uint8),
                "uint16": dtype(uint16),
                "uint32": dtype(uint32),
                "uint64": dtype(uint64),
            }
        if kind == "real floating":
            return {
                "float32": dtype(float32),
                "float64": dtype(float64),
            }
        if kind == "complex floating":
            return {
                "complex64": dtype(complex64),
                "complex128": dtype(complex128),
            }
        if kind == "numeric":
            return {
                "int8": dtype(int8),
                "int16": dtype(int16),
                "int32": dtype(int32),
                "int64": dtype(int64),
                "uint8": dtype(uint8),
                "uint16": dtype(uint16),
                "uint32": dtype(uint32),
                "uint64": dtype(uint64),
                "float32": dtype(float32),
                "float64": dtype(float64),
                "complex64": dtype(complex64),
                "complex128": dtype(complex128),
            }
        if isinstance(kind, tuple):
            res = {}
            for k in kind:
                res.update(self.dtypes(kind=k))
            return res
        raise ValueError(f"unsupported kind: {kind!r}")

    def devices(self):
        """
        The devices supported by NumPy.

        For NumPy, this always returns ``['cpu']``.

        Returns
        -------
        devices : list of str
            The devices supported by NumPy.

        See Also
        --------
        __array_namespace_info__.capabilities,
        __array_namespace_info__.default_device,
        __array_namespace_info__.default_dtypes,
        __array_namespace_info__.dtypes

        Examples
        --------
        >>> info = np.__array_namespace_info__()
        >>> info.devices()
        ['cpu']

        """
        return ["cpu"]