From John6666/wai-shuffle-noob-vpred01-sdxl: https://civitai.com/models/989367/wai-shuffle-noob
Based on my experience, Q4_K_S and Q4_K_M are usually the balance points between model size, quantization, and speed.
In some benchmarks, selecting a large-parameter high-quantization LLM tends to perform better than a small-parameter low-quantization LLM.
根据我的经验,通常Q4_K_S、Q4_K_M是模型尺寸/量化/速度的平衡点
在某些基准测试中,选择大参数低量化模型往往比选择小参数高量化模型表现更好。
- Downloads last month
- 103
Hardware compatibility
Log In
to view the estimation
4-bit
6-bit
8-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no library tag.
Model tree for btaskel/wai-shuffle-noob-vpred01-sdxl-GGUF
Base model
Laxhar/noobai-XL-Vpred-0.5
Finetuned
Laxhar/noobai-XL-Vpred-0.6
Finetuned
Laxhar/noobai-XL-Vpred-0.65
Finetuned
Laxhar/noobai-XL-Vpred-0.75
Finetuned
Laxhar/noobai-XL-Vpred-1.0
Finetuned
John6666/wai-shuffle-noob-vpred01-sdxl