drippy-melt / README.md
brushpenbob's picture
Upload folder using huggingface_hub
ab9126c verified
---
license: other
license_name: bespoke-lora-trained-license
license_link: https://multimodal.art/civitai-licenses?allowNoCredit=False&allowCommercialUse=RentCivit&allowDerivatives=False&allowDifferentLicense=True
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
- migrated
- concept
- melting
- drip
- dripping
- melt
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: evangmelt
widget:
- text: ' '
output:
url: >-
25167157.jpeg
- text: ' '
output:
url: >-
25167468.jpeg
- text: ' '
output:
url: >-
25125830.jpeg
- text: ' '
output:
url: >-
25125829.jpeg
---
# drippy melt
<Gallery />
## Model description
<p>my first attempt at making a dripping art style</p><p></p><div data-youtube-video><iframe width="640" height="480" allowfullscreen="true" autoplay="false" disablekbcontrols="false" enableiframeapi="false" endtime="0" ivloadpolicy="0" loop="false" modestbranding="false" origin playlist src="https://www.youtube.com/embed/QynE0UGQhRs" start="0"></iframe></div>
## Trigger words
You should use `evangmelt`, `Drippy34` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/brushpenbob/drippy-melt/tree/main) them in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('brushpenbob/drippy-melt', weight_name='melting_drip.safetensors')
image = pipeline('`evangmelt`, `Drippy34`').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)