mistral-LLM-NER

This model is a fine-tuned version of openaccess-ai-collective/tiny-mistral on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1446

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00025
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
7.9928 0.23 25 5.6978
3.9614 0.45 50 2.6379
2.3449 0.68 75 2.0141
1.9745 0.9 100 1.7486
1.7972 1.13 125 1.6622
1.5265 1.35 150 1.6077
1.3779 1.58 175 1.4895
1.2514 1.8 200 1.4698
1.3015 2.03 225 1.4646
1.1816 2.25 250 1.4042
1.0834 2.48 275 1.3628
1.2907 2.7 300 1.3486
1.4177 2.93 325 1.2939
1.1508 3.15 350 1.2380
0.9248 3.38 375 1.2098
1.0663 3.6 400 1.1924
1.0292 3.83 425 1.1797
0.9591 4.05 450 1.1630
0.837 4.28 475 1.1533
0.9954 4.5 500 1.1446

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for bruhjeet26/mistral-LLM-NER

Adapter
(3)
this model