llama_finetune_mc_20_cot
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 4.0293
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9129 | 1.0 | 70 | 1.6726 |
0.2315 | 2.0 | 140 | 2.3392 |
0.1771 | 3.0 | 210 | 2.4929 |
0.1428 | 4.0 | 280 | 2.6548 |
0.1106 | 5.0 | 350 | 2.6539 |
0.0592 | 6.0 | 420 | 2.8574 |
0.051 | 7.0 | 490 | 3.0477 |
0.0568 | 8.0 | 560 | 3.1988 |
0.0309 | 9.0 | 630 | 3.2646 |
0.0235 | 10.0 | 700 | 3.4138 |
0.0243 | 11.0 | 770 | 3.3431 |
0.0259 | 12.0 | 840 | 3.5628 |
0.0232 | 13.0 | 910 | 3.6910 |
0.0221 | 14.0 | 980 | 3.6820 |
0.0202 | 15.0 | 1050 | 3.8640 |
0.0181 | 16.0 | 1120 | 3.9228 |
0.0191 | 17.0 | 1190 | 3.9716 |
0.0184 | 18.0 | 1260 | 4.0096 |
0.0186 | 19.0 | 1330 | 4.0225 |
0.0165 | 20.0 | 1400 | 4.0293 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.13.1
- Tokenizers 0.14.1
Model tree for brettbbb/llama_finetune_mc_20_cot
Base model
meta-llama/Llama-2-7b-hf