|
""" |
|
Utilities for working with the local dataset cache. |
|
This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp |
|
Copyright by the AllenNLP authors. |
|
""" |
|
|
|
import os |
|
import logging |
|
import shutil |
|
import tempfile |
|
import json |
|
from urllib.parse import urlparse |
|
from pathlib import Path |
|
from typing import Optional, Tuple, Union, IO, Callable, Set |
|
from hashlib import sha256 |
|
from functools import wraps |
|
|
|
from tqdm import tqdm |
|
|
|
import boto3 |
|
from botocore.exceptions import ClientError |
|
import requests |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
PYTORCH_PRETRAINED_BERT_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', |
|
Path.home() / '.pytorch_pretrained_bert')) |
|
|
|
|
|
def url_to_filename(url: str, etag: str = None) -> str: |
|
""" |
|
Convert `url` into a hashed filename in a repeatable way. |
|
If `etag` is specified, append its hash to the url's, delimited |
|
by a period. |
|
""" |
|
url_bytes = url.encode('utf-8') |
|
url_hash = sha256(url_bytes) |
|
filename = url_hash.hexdigest() |
|
|
|
if etag: |
|
etag_bytes = etag.encode('utf-8') |
|
etag_hash = sha256(etag_bytes) |
|
filename += '.' + etag_hash.hexdigest() |
|
|
|
return filename |
|
|
|
|
|
def filename_to_url(filename: str, cache_dir: Union[str, Path] = None) -> Tuple[str, str]: |
|
""" |
|
Return the url and etag (which may be ``None``) stored for `filename`. |
|
Raise ``FileNotFoundError`` if `filename` or its stored metadata do not exist. |
|
""" |
|
if cache_dir is None: |
|
cache_dir = PYTORCH_PRETRAINED_BERT_CACHE |
|
if isinstance(cache_dir, Path): |
|
cache_dir = str(cache_dir) |
|
|
|
cache_path = os.path.join(cache_dir, filename) |
|
if not os.path.exists(cache_path): |
|
raise FileNotFoundError("file {} not found".format(cache_path)) |
|
|
|
meta_path = cache_path + '.json' |
|
if not os.path.exists(meta_path): |
|
raise FileNotFoundError("file {} not found".format(meta_path)) |
|
|
|
with open(meta_path) as meta_file: |
|
metadata = json.load(meta_file) |
|
url = metadata['url'] |
|
etag = metadata['etag'] |
|
|
|
return url, etag |
|
|
|
|
|
def cached_path(url_or_filename: Union[str, Path], cache_dir: Union[str, Path] = None) -> str: |
|
""" |
|
Given something that might be a URL (or might be a local path), |
|
determine which. If it's a URL, download the file and cache it, and |
|
return the path to the cached file. If it's already a local path, |
|
make sure the file exists and then return the path. |
|
""" |
|
if cache_dir is None: |
|
cache_dir = PYTORCH_PRETRAINED_BERT_CACHE |
|
if isinstance(url_or_filename, Path): |
|
url_or_filename = str(url_or_filename) |
|
if isinstance(cache_dir, Path): |
|
cache_dir = str(cache_dir) |
|
|
|
parsed = urlparse(url_or_filename) |
|
|
|
if parsed.scheme in ('http', 'https', 's3'): |
|
|
|
return get_from_cache(url_or_filename, cache_dir) |
|
elif os.path.exists(url_or_filename): |
|
|
|
return url_or_filename |
|
elif parsed.scheme == '': |
|
|
|
raise FileNotFoundError("file {} not found".format(url_or_filename)) |
|
else: |
|
|
|
raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename)) |
|
|
|
|
|
def split_s3_path(url: str) -> Tuple[str, str]: |
|
"""Split a full s3 path into the bucket name and path.""" |
|
parsed = urlparse(url) |
|
if not parsed.netloc or not parsed.path: |
|
raise ValueError("bad s3 path {}".format(url)) |
|
bucket_name = parsed.netloc |
|
s3_path = parsed.path |
|
|
|
if s3_path.startswith("/"): |
|
s3_path = s3_path[1:] |
|
return bucket_name, s3_path |
|
|
|
|
|
def s3_request(func: Callable): |
|
""" |
|
Wrapper function for s3 requests in order to create more helpful error |
|
messages. |
|
""" |
|
|
|
@wraps(func) |
|
def wrapper(url: str, *args, **kwargs): |
|
try: |
|
return func(url, *args, **kwargs) |
|
except ClientError as exc: |
|
if int(exc.response["Error"]["Code"]) == 404: |
|
raise FileNotFoundError("file {} not found".format(url)) |
|
else: |
|
raise |
|
|
|
return wrapper |
|
|
|
|
|
@s3_request |
|
def s3_etag(url: str) -> Optional[str]: |
|
"""Check ETag on S3 object.""" |
|
s3_resource = boto3.resource("s3") |
|
bucket_name, s3_path = split_s3_path(url) |
|
s3_object = s3_resource.Object(bucket_name, s3_path) |
|
return s3_object.e_tag |
|
|
|
|
|
@s3_request |
|
def s3_get(url: str, temp_file: IO) -> None: |
|
"""Pull a file directly from S3.""" |
|
s3_resource = boto3.resource("s3") |
|
bucket_name, s3_path = split_s3_path(url) |
|
s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file) |
|
|
|
|
|
def http_get(url: str, temp_file: IO) -> None: |
|
req = requests.get(url, stream=True) |
|
content_length = req.headers.get('Content-Length') |
|
total = int(content_length) if content_length is not None else None |
|
progress = tqdm(unit="B", total=total) |
|
for chunk in req.iter_content(chunk_size=1024): |
|
if chunk: |
|
progress.update(len(chunk)) |
|
temp_file.write(chunk) |
|
progress.close() |
|
|
|
|
|
def get_from_cache(url: str, cache_dir: Union[str, Path] = None) -> str: |
|
""" |
|
Given a URL, look for the corresponding dataset in the local cache. |
|
If it's not there, download it. Then return the path to the cached file. |
|
""" |
|
if cache_dir is None: |
|
cache_dir = PYTORCH_PRETRAINED_BERT_CACHE |
|
if isinstance(cache_dir, Path): |
|
cache_dir = str(cache_dir) |
|
|
|
os.makedirs(cache_dir, exist_ok=True) |
|
|
|
|
|
if url.startswith("s3://"): |
|
etag = s3_etag(url) |
|
else: |
|
response = requests.head(url, allow_redirects=True) |
|
if response.status_code != 200: |
|
raise IOError("HEAD request failed for url {} with status code {}" |
|
.format(url, response.status_code)) |
|
etag = response.headers.get("ETag") |
|
|
|
filename = url_to_filename(url, etag) |
|
|
|
|
|
cache_path = os.path.join(cache_dir, filename) |
|
|
|
if not os.path.exists(cache_path): |
|
|
|
|
|
with tempfile.NamedTemporaryFile() as temp_file: |
|
logger.info("%s not found in cache, downloading to %s", url, temp_file.name) |
|
|
|
|
|
if url.startswith("s3://"): |
|
s3_get(url, temp_file) |
|
else: |
|
http_get(url, temp_file) |
|
|
|
|
|
temp_file.flush() |
|
|
|
temp_file.seek(0) |
|
|
|
logger.info("copying %s to cache at %s", temp_file.name, cache_path) |
|
with open(cache_path, 'wb') as cache_file: |
|
shutil.copyfileobj(temp_file, cache_file) |
|
|
|
logger.info("creating metadata file for %s", cache_path) |
|
meta = {'url': url, 'etag': etag} |
|
meta_path = cache_path + '.json' |
|
with open(meta_path, 'w') as meta_file: |
|
json.dump(meta, meta_file) |
|
|
|
logger.info("removing temp file %s", temp_file.name) |
|
|
|
return cache_path |
|
|
|
|
|
def read_set_from_file(filename: str) -> Set[str]: |
|
''' |
|
Extract a de-duped collection (set) of text from a file. |
|
Expected file format is one item per line. |
|
''' |
|
collection = set() |
|
with open(filename, 'r', encoding='utf-8') as file_: |
|
for line in file_: |
|
collection.add(line.rstrip()) |
|
return collection |
|
|
|
|
|
def get_file_extension(path: str, dot=True, lower: bool = True): |
|
ext = os.path.splitext(path)[1] |
|
ext = ext if dot else ext[1:] |
|
return ext.lower() if lower else ext |
|
|