Upload 22 files
Browse files- modeling/__init__.py +37 -0
- modeling/bert.py +307 -0
- modeling/cache_utils.py +132 -0
- modeling/config.py +90 -0
- modeling/da_utils.py +36 -0
- modeling/deberta.py +149 -0
- modeling/disentangled_attention.py +212 -0
- modeling/file_utils.py +239 -0
- modeling/flash.py +794 -0
- modeling/focal_loss.py +200 -0
- modeling/gat.py +665 -0
- modeling/gpt2_bpe_utils.py +163 -0
- modeling/gpt2_tokenizer.py +216 -0
- modeling/mlm.py +38 -0
- modeling/modeling.py +0 -0
- modeling/nnmodule.py +184 -0
- modeling/ops.py +274 -0
- modeling/pooling.py +88 -0
- modeling/pretrained_models.py +2 -0
- modeling/spm_tokenizer.py +322 -0
- modeling/tokenizers.py +18 -0
- modeling/wywlm_modeling.py +446 -0
modeling/__init__.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Zhou Bo
|
3 |
+
|
4 |
+
#
|
5 |
+
|
6 |
+
""" Components for NN
|
7 |
+
"""
|
8 |
+
|
9 |
+
from __future__ import absolute_import
|
10 |
+
from __future__ import division
|
11 |
+
from __future__ import print_function
|
12 |
+
|
13 |
+
from .tokenizers import *
|
14 |
+
from .pooling import *
|
15 |
+
from .mlm import MLMPredictionHead
|
16 |
+
from .nnmodule import NNModule
|
17 |
+
from .deberta import *
|
18 |
+
from .disentangled_attention import *
|
19 |
+
from .ops import *
|
20 |
+
from .bert import *
|
21 |
+
from .config import *
|
22 |
+
from .cache_utils import *
|
23 |
+
from .focal_loss import *
|
24 |
+
# from .tokenization import BertTokenizer, BasicTokenizer, WordpieceTokenizer
|
25 |
+
from .modeling import (BertConfig, BertModel, BertForPreTraining, BertForMaskedLM,
|
26 |
+
BertForNextSentencePrediction, PreTrainedBertModel,
|
27 |
+
BertForSequenceClassification, BertForMultipleChoice, BertForTokenClassification,
|
28 |
+
BertForQuestionAnswering, BertForPreTrainingLossMask, BertPreTrainingPairRel,
|
29 |
+
BertPreTrainingPairTransform, BertPreTrainingHeads, MLMHead)
|
30 |
+
# from .optimization import BertAdam, BertAdamFineTune
|
31 |
+
try:
|
32 |
+
from .optimization_fp16 import FP16_Optimizer_State
|
33 |
+
except:
|
34 |
+
pass
|
35 |
+
from .file_utils import PYTORCH_PRETRAINED_BERT_CACHE
|
36 |
+
from .flash import FlashQuadModel
|
37 |
+
from .gat import GatModel
|
modeling/bert.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
2 |
+
# Copyright (c) Microsoft, Inc. 2020
|
3 |
+
#
|
4 |
+
# This source code is licensed under the MIT license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# This piece of code is modified based on https://github.com/huggingface/transformers
|
8 |
+
|
9 |
+
import copy
|
10 |
+
import torch
|
11 |
+
from torch import nn
|
12 |
+
from collections import Sequence
|
13 |
+
from packaging import version
|
14 |
+
import numpy as np
|
15 |
+
import math
|
16 |
+
import os
|
17 |
+
import pdb
|
18 |
+
|
19 |
+
import json
|
20 |
+
from .ops import *
|
21 |
+
from .disentangled_attention import *
|
22 |
+
from .da_utils import *
|
23 |
+
|
24 |
+
__all__ = ['BertEncoder', 'BertEmbeddings', 'ACT2FN', 'LayerNorm', 'BertLMPredictionHead']
|
25 |
+
|
26 |
+
class BertSelfOutput(nn.Module):
|
27 |
+
def __init__(self, config):
|
28 |
+
super().__init__()
|
29 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
30 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
31 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
32 |
+
self.config = config
|
33 |
+
|
34 |
+
def forward(self, hidden_states, input_states, mask=None):
|
35 |
+
hidden_states = self.dense(hidden_states)
|
36 |
+
hidden_states = self.dropout(hidden_states)
|
37 |
+
hidden_states += input_states
|
38 |
+
hidden_states = MaskedLayerNorm(self.LayerNorm, hidden_states)
|
39 |
+
return hidden_states
|
40 |
+
|
41 |
+
class BertAttention(nn.Module):
|
42 |
+
def __init__(self, config):
|
43 |
+
super().__init__()
|
44 |
+
self.self = DisentangledSelfAttention(config)
|
45 |
+
self.output = BertSelfOutput(config)
|
46 |
+
self.config = config
|
47 |
+
|
48 |
+
def forward(self, hidden_states, attention_mask, return_att=False, query_states=None, relative_pos=None, rel_embeddings=None):
|
49 |
+
output = self.self(hidden_states, attention_mask, return_att, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings)
|
50 |
+
self_output, att_matrix, att_logits_=output['hidden_states'], output['attention_probs'], output['attention_logits']
|
51 |
+
if query_states is None:
|
52 |
+
query_states = hidden_states
|
53 |
+
attention_output = self.output(self_output, query_states, attention_mask)
|
54 |
+
|
55 |
+
if return_att:
|
56 |
+
return (attention_output, att_matrix)
|
57 |
+
else:
|
58 |
+
return attention_output
|
59 |
+
|
60 |
+
class BertIntermediate(nn.Module):
|
61 |
+
def __init__(self, config):
|
62 |
+
super().__init__()
|
63 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
64 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act] \
|
65 |
+
if isinstance(config.hidden_act, str) else config.hidden_act
|
66 |
+
|
67 |
+
def forward(self, hidden_states):
|
68 |
+
hidden_states = self.dense(hidden_states)
|
69 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
70 |
+
return hidden_states
|
71 |
+
|
72 |
+
class BertOutput(nn.Module):
|
73 |
+
def __init__(self, config):
|
74 |
+
super(BertOutput, self).__init__()
|
75 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
76 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
77 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
78 |
+
self.config = config
|
79 |
+
|
80 |
+
def forward(self, hidden_states, input_states, mask=None):
|
81 |
+
hidden_states = self.dense(hidden_states)
|
82 |
+
hidden_states = self.dropout(hidden_states)
|
83 |
+
hidden_states += input_states
|
84 |
+
hidden_states = MaskedLayerNorm(self.LayerNorm, hidden_states)
|
85 |
+
return hidden_states
|
86 |
+
|
87 |
+
class BertLayer(nn.Module):
|
88 |
+
def __init__(self, config):
|
89 |
+
super(BertLayer, self).__init__()
|
90 |
+
self.attention = BertAttention(config)
|
91 |
+
self.intermediate = BertIntermediate(config)
|
92 |
+
self.output = BertOutput(config)
|
93 |
+
|
94 |
+
def forward(self, hidden_states, attention_mask, return_att=False, query_states=None, relative_pos=None, rel_embeddings=None):
|
95 |
+
attention_output = self.attention(hidden_states, attention_mask, return_att=return_att, \
|
96 |
+
query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings)
|
97 |
+
if return_att:
|
98 |
+
attention_output, att_matrix = attention_output
|
99 |
+
intermediate_output = self.intermediate(attention_output)
|
100 |
+
layer_output = self.output(intermediate_output, attention_output, attention_mask)
|
101 |
+
if return_att:
|
102 |
+
return (layer_output, att_matrix)
|
103 |
+
else:
|
104 |
+
return layer_output
|
105 |
+
|
106 |
+
class ConvLayer(nn.Module):
|
107 |
+
def __init__(self, config):
|
108 |
+
super().__init__()
|
109 |
+
kernel_size = getattr(config, 'conv_kernel_size', 3)
|
110 |
+
groups = getattr(config, 'conv_groups', 1)
|
111 |
+
self.conv_act = getattr(config, 'conv_act', 'tanh')
|
112 |
+
self.conv = torch.nn.Conv1d(config.hidden_size, config.hidden_size, kernel_size, padding = (kernel_size-1)//2, groups = groups)
|
113 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
114 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
115 |
+
self.config = config
|
116 |
+
|
117 |
+
def forward(self, hidden_states, residual_states, input_mask):
|
118 |
+
out = self.conv(hidden_states.permute(0,2,1).contiguous()).permute(0,2,1).contiguous()
|
119 |
+
if version.Version(torch.__version__) >= version.Version('1.2.0a'):
|
120 |
+
rmask = (1-input_mask).bool()
|
121 |
+
else:
|
122 |
+
rmask = (1-input_mask).byte()
|
123 |
+
out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0)
|
124 |
+
out = ACT2FN[self.conv_act](self.dropout(out))
|
125 |
+
output_states = MaskedLayerNorm(self.LayerNorm, residual_states + out, input_mask)
|
126 |
+
|
127 |
+
return output_states
|
128 |
+
|
129 |
+
class BertEncoder(nn.Module):
|
130 |
+
""" Modified BertEncoder with relative position bias support
|
131 |
+
"""
|
132 |
+
def __init__(self, config):
|
133 |
+
super().__init__()
|
134 |
+
#layer = BertLayer(config)
|
135 |
+
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
|
136 |
+
self.relative_attention = getattr(config, 'relative_attention', False)
|
137 |
+
if self.relative_attention:
|
138 |
+
self.max_relative_positions = getattr(config, 'max_relative_positions', -1)
|
139 |
+
if self.max_relative_positions <1:
|
140 |
+
self.max_relative_positions = config.max_position_embeddings
|
141 |
+
self.position_buckets = getattr(config, 'position_buckets', -1)
|
142 |
+
pos_ebd_size = self.max_relative_positions*2
|
143 |
+
if self.position_buckets>0:
|
144 |
+
pos_ebd_size = self.position_buckets*2
|
145 |
+
self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size)
|
146 |
+
|
147 |
+
self.norm_rel_ebd = [x.strip() for x in getattr(config, 'norm_rel_ebd', 'none').lower().split('|')]
|
148 |
+
if 'layer_norm' in self.norm_rel_ebd:
|
149 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine = True)
|
150 |
+
kernel_size = getattr(config, 'conv_kernel_size', 0)
|
151 |
+
self.with_conv = False
|
152 |
+
if kernel_size > 0:
|
153 |
+
self.with_conv = True
|
154 |
+
self.conv = ConvLayer(config)
|
155 |
+
|
156 |
+
def get_rel_embedding(self):
|
157 |
+
rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
|
158 |
+
if rel_embeddings is not None and ('layer_norm' in self.norm_rel_ebd):
|
159 |
+
rel_embeddings = self.LayerNorm(rel_embeddings)
|
160 |
+
return rel_embeddings
|
161 |
+
|
162 |
+
def get_attention_mask(self, attention_mask):
|
163 |
+
if attention_mask.dim()<=2:
|
164 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
165 |
+
attention_mask = extended_attention_mask*extended_attention_mask.squeeze(-2).unsqueeze(-1)
|
166 |
+
attention_mask = attention_mask.byte()
|
167 |
+
elif attention_mask.dim()==3:
|
168 |
+
attention_mask = attention_mask.unsqueeze(1)
|
169 |
+
|
170 |
+
return attention_mask
|
171 |
+
|
172 |
+
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
|
173 |
+
if self.relative_attention and relative_pos is None:
|
174 |
+
q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
|
175 |
+
relative_pos = build_relative_position(q, hidden_states.size(-2), bucket_size = self.position_buckets, max_position=self.max_relative_positions)
|
176 |
+
return relative_pos
|
177 |
+
|
178 |
+
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True, return_att=False, query_states = None, relative_pos=None):
|
179 |
+
if attention_mask.dim()<=2:
|
180 |
+
input_mask = attention_mask
|
181 |
+
else:
|
182 |
+
input_mask = (attention_mask.sum(-2)>0).byte()
|
183 |
+
attention_mask = self.get_attention_mask(attention_mask)
|
184 |
+
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
|
185 |
+
|
186 |
+
all_encoder_layers = []
|
187 |
+
att_matrices = []
|
188 |
+
if isinstance(hidden_states, Sequence):
|
189 |
+
next_kv = hidden_states[0]
|
190 |
+
else:
|
191 |
+
next_kv = hidden_states
|
192 |
+
rel_embeddings = self.get_rel_embedding()
|
193 |
+
for i, layer_module in enumerate(self.layer):
|
194 |
+
output_states = layer_module(next_kv, attention_mask, return_att, query_states = query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings)
|
195 |
+
if return_att:
|
196 |
+
output_states, att_m = output_states
|
197 |
+
|
198 |
+
if i == 0 and self.with_conv:
|
199 |
+
prenorm = output_states #output['prenorm_states']
|
200 |
+
output_states = self.conv(hidden_states, prenorm, input_mask)
|
201 |
+
|
202 |
+
if query_states is not None:
|
203 |
+
query_states = output_states
|
204 |
+
if isinstance(hidden_states, Sequence):
|
205 |
+
next_kv = hidden_states[i+1] if i+1 < len(self.layer) else None
|
206 |
+
else:
|
207 |
+
next_kv = output_states
|
208 |
+
|
209 |
+
if output_all_encoded_layers:
|
210 |
+
all_encoder_layers.append(output_states)
|
211 |
+
if return_att:
|
212 |
+
att_matrices.append(att_m)
|
213 |
+
if not output_all_encoded_layers:
|
214 |
+
all_encoder_layers.append(output_states)
|
215 |
+
if return_att:
|
216 |
+
att_matrices.append(att_m)
|
217 |
+
return {
|
218 |
+
'hidden_states': all_encoder_layers,
|
219 |
+
'attention_matrices': att_matrices
|
220 |
+
}
|
221 |
+
|
222 |
+
class BertEmbeddings(nn.Module):
|
223 |
+
"""Construct the embeddings from word, position and token_type embeddings.
|
224 |
+
"""
|
225 |
+
def __init__(self, config):
|
226 |
+
super(BertEmbeddings, self).__init__()
|
227 |
+
padding_idx = getattr(config, 'padding_idx', 0)
|
228 |
+
self.embedding_size = getattr(config, 'embedding_size', config.hidden_size)
|
229 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx = padding_idx)
|
230 |
+
self.position_biased_input = getattr(config, 'position_biased_input', True)
|
231 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)
|
232 |
+
|
233 |
+
if config.type_vocab_size>0:
|
234 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
|
235 |
+
|
236 |
+
if self.embedding_size != config.hidden_size:
|
237 |
+
self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
|
238 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
239 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
240 |
+
self.output_to_half = False
|
241 |
+
self.config = config
|
242 |
+
|
243 |
+
def forward(self, input_ids, token_type_ids=None, position_ids=None, mask = None):
|
244 |
+
seq_length = input_ids.size(1)
|
245 |
+
if position_ids is None:
|
246 |
+
position_ids = torch.arange(0, seq_length, dtype=torch.long, device=input_ids.device)
|
247 |
+
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
|
248 |
+
if token_type_ids is None:
|
249 |
+
token_type_ids = torch.zeros_like(input_ids)
|
250 |
+
|
251 |
+
words_embeddings = self.word_embeddings(input_ids)
|
252 |
+
position_embeddings = self.position_embeddings(position_ids.long())
|
253 |
+
|
254 |
+
embeddings = words_embeddings
|
255 |
+
if self.config.type_vocab_size>0:
|
256 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
257 |
+
embeddings += token_type_embeddings
|
258 |
+
|
259 |
+
if self.position_biased_input:
|
260 |
+
embeddings += position_embeddings
|
261 |
+
|
262 |
+
if self.embedding_size != self.config.hidden_size:
|
263 |
+
embeddings = self.embed_proj(embeddings)
|
264 |
+
embeddings = MaskedLayerNorm(self.LayerNorm, embeddings, mask)
|
265 |
+
embeddings = self.dropout(embeddings)
|
266 |
+
return {
|
267 |
+
'embeddings': embeddings,
|
268 |
+
'position_embeddings': position_embeddings}
|
269 |
+
|
270 |
+
class BertLMPredictionHead(nn.Module):
|
271 |
+
def __init__(self, config, vocab_size):
|
272 |
+
super().__init__()
|
273 |
+
self.embedding_size = getattr(config, 'embedding_size', config.hidden_size)
|
274 |
+
self.dense = nn.Linear(config.hidden_size, self.embedding_size)
|
275 |
+
self.transform_act_fn = ACT2FN[config.hidden_act] \
|
276 |
+
if isinstance(config.hidden_act, str) else config.hidden_act
|
277 |
+
|
278 |
+
self.LayerNorm = LayerNorm(self.embedding_size, config.layer_norm_eps, elementwise_affine=True)
|
279 |
+
|
280 |
+
self.bias = nn.Parameter(torch.zeros(vocab_size))
|
281 |
+
|
282 |
+
def forward(self, hidden_states, embeding_weight):
|
283 |
+
hidden_states = self.dense(hidden_states)
|
284 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
285 |
+
# b x s x d
|
286 |
+
hidden_states = MaskedLayerNorm(self.LayerNorm, hidden_states)
|
287 |
+
|
288 |
+
# b x s x v
|
289 |
+
logits = torch.matmul(hidden_states, embeding_weight.t().to(hidden_states)) + self.bias
|
290 |
+
return logits
|
291 |
+
|
292 |
+
|
293 |
+
class AR_MASK(object):
|
294 |
+
def get_attention_mask(self, input_ids=None, token_type_ids=None ):
|
295 |
+
seq_len = input_ids.size(1)
|
296 |
+
# idxs = torch.arange(0, seq_len)
|
297 |
+
# mask = idxs[None, :] <= idxs[:, None]
|
298 |
+
mask = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.uint8)).to(input_ids.device)
|
299 |
+
mask = mask.unsqueeze(0).expand(input_ids.size(0), seq_len, seq_len)
|
300 |
+
return mask
|
301 |
+
# torch.diagonal(torch.ones([input_ids.size(1), input_ids.size(1)])).byte().to(input_ids.device)
|
302 |
+
|
303 |
+
class Prefix_MASK(object):
|
304 |
+
def get_attention_mask(self, input_ids=None, token_type_ids=None):
|
305 |
+
idxs = torch.cumsum(token_type_ids, axis=1)
|
306 |
+
mask = idxs[:, None, :] <= idxs[:, :, None]
|
307 |
+
return mask.byte().to(input_ids.device)
|
modeling/cache_utils.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft, Inc. 2020
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
# Zhou Bo
|
7 |
+
# Date: 05/15/2020
|
8 |
+
#
|
9 |
+
|
10 |
+
import pdb
|
11 |
+
import torch
|
12 |
+
import os
|
13 |
+
import requests
|
14 |
+
from .config import ModelConfig
|
15 |
+
import pathlib
|
16 |
+
from ..utils import xtqdm as tqdm
|
17 |
+
from zipfile import ZipFile
|
18 |
+
import loguru
|
19 |
+
# from ..utils import get_logger
|
20 |
+
logger = loguru.logger
|
21 |
+
|
22 |
+
__all__ = ['pretrained_models', 'load_model_state', 'load_vocab']
|
23 |
+
|
24 |
+
class PretrainedModel:
|
25 |
+
def __init__(self, name, vocab, vocab_type, model='pytorch_model.bin', config='config.json', **kwargs):
|
26 |
+
self.__dict__.update(kwargs)
|
27 |
+
host = f'https://huggingface.co/microsoft/{name}/resolve/main/'
|
28 |
+
self.name = name
|
29 |
+
self.model_url = host + model
|
30 |
+
self.config_url = host + config
|
31 |
+
self.vocab_url = host + vocab
|
32 |
+
self.vocab_type = vocab_type
|
33 |
+
|
34 |
+
pretrained_models= {
|
35 |
+
'base': PretrainedModel('deberta-base', 'bpe_encoder.bin', 'gpt2'),
|
36 |
+
'large': PretrainedModel('deberta-large', 'bpe_encoder.bin', 'gpt2'),
|
37 |
+
'xlarge': PretrainedModel('deberta-xlarge', 'bpe_encoder.bin', 'gpt2'),
|
38 |
+
'base-mnli': PretrainedModel('deberta-base-mnli', 'bpe_encoder.bin', 'gpt2'),
|
39 |
+
'large-mnli': PretrainedModel('deberta-large-mnli', 'bpe_encoder.bin', 'gpt2'),
|
40 |
+
'xlarge-mnli': PretrainedModel('deberta-xlarge-mnli', 'bpe_encoder.bin', 'gpt2'),
|
41 |
+
'xlarge-v2': PretrainedModel('deberta-v2-xlarge', 'spm.model', 'spm'),
|
42 |
+
'xxlarge-v2': PretrainedModel('deberta-v2-xxlarge', 'spm.model', 'spm'),
|
43 |
+
'xlarge-v2-mnli': PretrainedModel('deberta-v2-xlarge-mnli', 'spm.model', 'spm'),
|
44 |
+
'xxlarge-v2-mnli': PretrainedModel('deberta-v2-xxlarge-mnli', 'spm.model', 'spm'),
|
45 |
+
'deberta-v3-small': PretrainedModel('deberta-v3-small', 'spm.model', 'spm'),
|
46 |
+
'deberta-v3-base': PretrainedModel('deberta-v3-base', 'spm.model', 'spm'),
|
47 |
+
'deberta-v3-large': PretrainedModel('deberta-v3-large', 'spm.model', 'spm'),
|
48 |
+
'mdeberta-v3-base': PretrainedModel('mdeberta-v3-base', 'spm.model', 'spm'),
|
49 |
+
'deberta-v3-xsmall': PretrainedModel('deberta-v3-xsmall', 'spm.model', 'spm'),
|
50 |
+
}
|
51 |
+
|
52 |
+
def download_asset(url, name, tag=None, no_cache=False, cache_dir=None):
|
53 |
+
_tag = tag
|
54 |
+
if _tag is None:
|
55 |
+
_tag = 'latest'
|
56 |
+
if not cache_dir:
|
57 |
+
cache_dir = os.path.join(pathlib.Path.home(), f'.~DeBERTa/assets/{_tag}/')
|
58 |
+
os.makedirs(cache_dir, exist_ok=True)
|
59 |
+
output=os.path.join(cache_dir, name)
|
60 |
+
if os.path.exists(output) and (not no_cache):
|
61 |
+
return output
|
62 |
+
|
63 |
+
#repo=f'https://huggingface.co/microsoft/deberta-{name}/blob/main/bpe_encoder.bin'
|
64 |
+
headers = {}
|
65 |
+
headers['Accept'] = 'application/octet-stream'
|
66 |
+
resp = requests.get(url, stream=True, headers=headers)
|
67 |
+
if resp.status_code != 200:
|
68 |
+
raise Exception(f'Request for {url} return {resp.status_code}, {resp.text}')
|
69 |
+
|
70 |
+
try:
|
71 |
+
with open(output, 'wb') as fs:
|
72 |
+
progress = tqdm(total=int(resp.headers['Content-Length']) if 'Content-Length' in resp.headers else -1, ncols=80, desc=f'Downloading {name}')
|
73 |
+
for c in resp.iter_content(chunk_size=1024*1024):
|
74 |
+
fs.write(c)
|
75 |
+
progress.update(len(c))
|
76 |
+
progress.close()
|
77 |
+
except:
|
78 |
+
os.remove(output)
|
79 |
+
raise
|
80 |
+
|
81 |
+
return output
|
82 |
+
|
83 |
+
def load_model_state(path_or_pretrained_id, tag=None, no_cache=False, cache_dir=None):
|
84 |
+
model_path = path_or_pretrained_id
|
85 |
+
if model_path and (not os.path.exists(model_path)) and (path_or_pretrained_id.lower() in pretrained_models):
|
86 |
+
_tag = tag
|
87 |
+
pretrained = pretrained_models[path_or_pretrained_id.lower()]
|
88 |
+
if _tag is None:
|
89 |
+
_tag = 'latest'
|
90 |
+
if not cache_dir:
|
91 |
+
cache_dir = os.path.join(pathlib.Path.home(), f'.~DeBERTa/assets/{_tag}/{pretrained.name}')
|
92 |
+
os.makedirs(cache_dir, exist_ok=True)
|
93 |
+
model_path = os.path.join(cache_dir, 'pytorch_model.bin')
|
94 |
+
if (not os.path.exists(model_path)) or no_cache:
|
95 |
+
asset = download_asset(pretrained.model_url, 'pytorch_model.bin', tag=tag, no_cache=no_cache, cache_dir=cache_dir)
|
96 |
+
asset = download_asset(pretrained.config_url, 'model_config.json', tag=tag, no_cache=no_cache, cache_dir=cache_dir)
|
97 |
+
elif not model_path:
|
98 |
+
return None,None
|
99 |
+
|
100 |
+
config_path = os.path.join(os.path.dirname(model_path), 'model_config.json')
|
101 |
+
model_state = torch.load(model_path, map_location='cpu')
|
102 |
+
logger.info("Loaded pretrained model file {}".format(model_path))
|
103 |
+
if 'config' in model_state:
|
104 |
+
model_config = ModelConfig.from_dict(model_state['config'])
|
105 |
+
elif os.path.exists(config_path):
|
106 |
+
model_config = ModelConfig.from_json_file(config_path)
|
107 |
+
else:
|
108 |
+
model_config = None
|
109 |
+
return model_state, model_config
|
110 |
+
|
111 |
+
def load_vocab(vocab_path=None, vocab_type=None, pretrained_id=None, tag=None, no_cache=False, cache_dir=None):
|
112 |
+
if pretrained_id and (pretrained_id.lower() in pretrained_models):
|
113 |
+
_tag = tag
|
114 |
+
if _tag is None:
|
115 |
+
_tag = 'latest'
|
116 |
+
|
117 |
+
pretrained = pretrained_models[pretrained_id.lower()]
|
118 |
+
if not cache_dir:
|
119 |
+
cache_dir = os.path.join(pathlib.Path.home(), f'.~DeBERTa/assets/{_tag}/{pretrained.name}')
|
120 |
+
os.makedirs(cache_dir, exist_ok=True)
|
121 |
+
vocab_type = pretrained.vocab_type
|
122 |
+
url = pretrained.vocab_url
|
123 |
+
outname = os.path.basename(url)
|
124 |
+
vocab_path =os.path.join(cache_dir, outname)
|
125 |
+
if (not os.path.exists(vocab_path)) or no_cache:
|
126 |
+
asset = download_asset(url, outname, tag=tag, no_cache=no_cache, cache_dir=cache_dir)
|
127 |
+
if vocab_type is None:
|
128 |
+
vocab_type = 'spm'
|
129 |
+
return vocab_path, vocab_type
|
130 |
+
|
131 |
+
def test_download():
|
132 |
+
vocab = load_vocab()
|
modeling/config.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import copy
|
3 |
+
|
4 |
+
__all__=['AbsModelConfig', 'ModelConfig']
|
5 |
+
|
6 |
+
class AbsModelConfig(object):
|
7 |
+
def __init__(self):
|
8 |
+
pass
|
9 |
+
|
10 |
+
@classmethod
|
11 |
+
def from_dict(cls, json_object):
|
12 |
+
"""Constructs a `ModelConfig` from a Python dictionary of parameters."""
|
13 |
+
config = cls()
|
14 |
+
for key, value in json_object.items():
|
15 |
+
if isinstance(value, dict):
|
16 |
+
value = AbsModelConfig.from_dict(value)
|
17 |
+
config.__dict__[key] = value
|
18 |
+
return config
|
19 |
+
|
20 |
+
@classmethod
|
21 |
+
def from_json_file(cls, json_file):
|
22 |
+
"""Constructs a `ModelConfig` from a json file of parameters."""
|
23 |
+
with open(json_file, "r", encoding='utf-8') as reader:
|
24 |
+
text = reader.read()
|
25 |
+
return cls.from_dict(json.loads(text))
|
26 |
+
|
27 |
+
def __repr__(self):
|
28 |
+
return str(self.to_json_string())
|
29 |
+
|
30 |
+
def to_dict(self):
|
31 |
+
"""Serializes this instance to a Python dictionary."""
|
32 |
+
output = copy.deepcopy(self.__dict__)
|
33 |
+
return output
|
34 |
+
|
35 |
+
def to_json_string(self):
|
36 |
+
"""Serializes this instance to a JSON string."""
|
37 |
+
def _json_default(obj):
|
38 |
+
if isinstance(obj, AbsModelConfig):
|
39 |
+
return obj.__dict__
|
40 |
+
return json.dumps(self.__dict__, indent=2, sort_keys=True, default=_json_default) + "\n"
|
41 |
+
|
42 |
+
class ModelConfig(AbsModelConfig):
|
43 |
+
"""Configuration class to store the configuration of a :class:`~DeBERTa.deberta.DeBERTa` model.
|
44 |
+
|
45 |
+
Attributes:
|
46 |
+
hidden_size (int): Size of the encoder layers and the pooler layer, default: `768`.
|
47 |
+
num_hidden_layers (int): Number of hidden layers in the Transformer encoder, default: `12`.
|
48 |
+
num_attention_heads (int): Number of attention heads for each attention layer in
|
49 |
+
the Transformer encoder, default: `12`.
|
50 |
+
intermediate_size (int): The size of the "intermediate" (i.e., feed-forward)
|
51 |
+
layer in the Transformer encoder, default: `3072`.
|
52 |
+
hidden_act (str): The non-linear activation function (function or string) in the
|
53 |
+
encoder and pooler. If string, "gelu", "relu" and "swish" are supported, default: `gelu`.
|
54 |
+
hidden_dropout_prob (float): The dropout probabilitiy for all fully connected
|
55 |
+
layers in the embeddings, encoder, and pooler, default: `0.1`.
|
56 |
+
attention_probs_dropout_prob (float): The dropout ratio for the attention
|
57 |
+
probabilities, default: `0.1`.
|
58 |
+
max_position_embeddings (int): The maximum sequence length that this model might
|
59 |
+
ever be used with. Typically set this to something large just in case
|
60 |
+
(e.g., 512 or 1024 or 2048), default: `512`.
|
61 |
+
type_vocab_size (int): The vocabulary size of the `token_type_ids` passed into
|
62 |
+
`DeBERTa` model, default: `-1`.
|
63 |
+
initializer_range (int): The sttdev of the _normal_initializer for
|
64 |
+
initializing all weight matrices, default: `0.02`.
|
65 |
+
relative_attention (:obj:`bool`): Whether use relative position encoding, default: `False`.
|
66 |
+
max_relative_positions (int): The range of relative positions [`-max_position_embeddings`, `max_position_embeddings`], default: -1, use the same value as `max_position_embeddings`.
|
67 |
+
padding_idx (int): The value used to pad input_ids, default: `0`.
|
68 |
+
position_biased_input (:obj:`bool`): Whether add absolute position embedding to content embedding, default: `True`.
|
69 |
+
pos_att_type (:obj:`str`): The type of relative position attention, it can be a combination of [`p2c`, `c2p`, `p2p`], e.g. "p2c", "p2c|c2p", "p2c|c2p|p2p"., default: "None".
|
70 |
+
|
71 |
+
|
72 |
+
"""
|
73 |
+
def __init__(self):
|
74 |
+
"""Constructs ModelConfig.
|
75 |
+
|
76 |
+
"""
|
77 |
+
|
78 |
+
self.hidden_size = 768
|
79 |
+
self.num_hidden_layers = 12
|
80 |
+
self.num_attention_heads = 12
|
81 |
+
self.hidden_act = "gelu"
|
82 |
+
self.intermediate_size = 3072
|
83 |
+
self.hidden_dropout_prob = 0.1
|
84 |
+
self.attention_probs_dropout_prob = 0.1
|
85 |
+
self.max_position_embeddings = 512
|
86 |
+
self.type_vocab_size = 0
|
87 |
+
self.initializer_range = 0.02
|
88 |
+
self.layer_norm_eps = 1e-7
|
89 |
+
self.padding_idx = 0
|
90 |
+
self.vocab_size = -1
|
modeling/da_utils.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pdb
|
3 |
+
from functools import lru_cache
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
__all__=['build_relative_position', 'make_log_bucket_position']
|
7 |
+
|
8 |
+
def make_log_bucket_position(relative_pos, bucket_size, max_position):
|
9 |
+
sign = np.sign(relative_pos)
|
10 |
+
mid = bucket_size//2
|
11 |
+
abs_pos = np.where((relative_pos<mid) & (relative_pos > -mid), mid-1, np.abs(relative_pos))
|
12 |
+
log_pos = np.ceil(np.log(abs_pos/mid)/np.log((max_position-1)/mid) * (mid-1)) + mid
|
13 |
+
bucket_pos = np.where(abs_pos<=mid, relative_pos, log_pos*sign).astype(np.int)
|
14 |
+
return bucket_pos
|
15 |
+
|
16 |
+
@lru_cache(maxsize=128)
|
17 |
+
def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1):
|
18 |
+
q_ids = np.arange(0, query_size)
|
19 |
+
k_ids = np.arange(0, key_size)
|
20 |
+
rel_pos_ids = q_ids[:, None] - np.tile(k_ids, (q_ids.shape[0],1))
|
21 |
+
if bucket_size>0 and max_position > 0:
|
22 |
+
rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
|
23 |
+
rel_pos_ids = torch.tensor(rel_pos_ids, dtype=torch.long)
|
24 |
+
rel_pos_ids = rel_pos_ids[:query_size, :]
|
25 |
+
rel_pos_ids = rel_pos_ids.unsqueeze(0)
|
26 |
+
return rel_pos_ids
|
27 |
+
|
28 |
+
def test_log_bucket():
|
29 |
+
x=np.arange(-511,511)
|
30 |
+
y=make_log_bucket_position(x, 128, 512)
|
31 |
+
# pdb.set_trace()
|
32 |
+
|
33 |
+
|
34 |
+
if __name__ == '__main__':
|
35 |
+
test_log_bucket()
|
36 |
+
build_relative_position(query_size=16, key_size=16, bucket_size=4, max_position=16)
|
modeling/deberta.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft, Inc. 2020
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
# Zhou Bo
|
7 |
+
# Date: 01/15/2020
|
8 |
+
#
|
9 |
+
|
10 |
+
import copy
|
11 |
+
import torch
|
12 |
+
import os
|
13 |
+
|
14 |
+
import json
|
15 |
+
from .ops import *
|
16 |
+
from .bert import *
|
17 |
+
from .config import ModelConfig
|
18 |
+
from .cache_utils import load_model_state
|
19 |
+
import pdb
|
20 |
+
|
21 |
+
__all__ = ['DeBERTa']
|
22 |
+
|
23 |
+
class DeBERTa(torch.nn.Module):
|
24 |
+
""" DeBERTa encoder
|
25 |
+
This module is composed of the input embedding layer with stacked transformer layers with disentangled attention.
|
26 |
+
|
27 |
+
Parameters:
|
28 |
+
config:
|
29 |
+
A model config class instance with the configuration to build a new model. The schema is similar to `BertConfig`, \
|
30 |
+
for more details, please refer :class:`~DeBERTa.deberta.ModelConfig`
|
31 |
+
|
32 |
+
pre_trained:
|
33 |
+
The pre-trained DeBERTa model, it can be a physical path of a pre-trained DeBERTa model or a released configurations, \
|
34 |
+
i.e. [**base, large, base_mnli, large_mnli**]
|
35 |
+
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(self, config=None, pre_trained=None):
|
39 |
+
super().__init__()
|
40 |
+
state = None
|
41 |
+
if pre_trained is not None:
|
42 |
+
state, model_config = load_model_state(pre_trained)
|
43 |
+
if config is not None and model_config is not None:
|
44 |
+
for k in config.__dict__:
|
45 |
+
if k not in ['hidden_size',
|
46 |
+
'intermediate_size',
|
47 |
+
'num_attention_heads',
|
48 |
+
'num_hidden_layers',
|
49 |
+
'vocab_size',
|
50 |
+
'max_position_embeddings']:
|
51 |
+
model_config.__dict__[k] = config.__dict__[k]
|
52 |
+
config = copy.copy(model_config)
|
53 |
+
self.embeddings = BertEmbeddings(config)
|
54 |
+
self.encoder = BertEncoder(config)
|
55 |
+
self.config = config
|
56 |
+
self.pre_trained = pre_trained
|
57 |
+
self.apply_state(state)
|
58 |
+
|
59 |
+
def forward(self, input_ids, attention_mask=None, token_type_ids=None, output_all_encoded_layers=True, position_ids = None, return_att = False):
|
60 |
+
"""
|
61 |
+
Args:
|
62 |
+
input_ids:
|
63 |
+
a torch.LongTensor of shape [batch_size, sequence_length] \
|
64 |
+
with the word token indices in the vocabulary
|
65 |
+
|
66 |
+
attention_mask:
|
67 |
+
an optional parameter for input mask or attention mask.
|
68 |
+
|
69 |
+
- If it's an input mask, then it will be torch.LongTensor of shape [batch_size, sequence_length] with indices \
|
70 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max \
|
71 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when \
|
72 |
+
a batch has varying length sentences.
|
73 |
+
|
74 |
+
- If it's an attention mask then it will be torch.LongTensor of shape [batch_size, sequence_length, sequence_length]. \
|
75 |
+
In this case, it's a mask indicate which tokens in the sequence should be attended by other tokens in the sequence.
|
76 |
+
|
77 |
+
token_type_ids:
|
78 |
+
an optional torch.LongTensor of shape [batch_size, sequence_length] with the token \
|
79 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to \
|
80 |
+
a `sentence B` token (see BERT paper for more details).
|
81 |
+
|
82 |
+
output_all_encoded_layers:
|
83 |
+
whether to output results of all encoder layers, default, True
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
|
87 |
+
- The output of the stacked transformer layers if `output_all_encoded_layers=True`, else \
|
88 |
+
the last layer of stacked transformer layers
|
89 |
+
|
90 |
+
- Attention matrix of self-attention layers if `return_att=True`
|
91 |
+
|
92 |
+
|
93 |
+
Example::
|
94 |
+
|
95 |
+
# Batch of wordPiece token ids.
|
96 |
+
# Each sample was padded with zero to the maxium length of the batch
|
97 |
+
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
98 |
+
# Mask of valid input ids
|
99 |
+
attention_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
100 |
+
|
101 |
+
# DeBERTa model initialized with pretrained base model
|
102 |
+
bert = DeBERTa(pre_trained='base')
|
103 |
+
|
104 |
+
encoder_layers = bert(input_ids, attention_mask=attention_mask)
|
105 |
+
|
106 |
+
"""
|
107 |
+
|
108 |
+
if attention_mask is None:
|
109 |
+
attention_mask = torch.ones_like(input_ids)
|
110 |
+
if token_type_ids is None:
|
111 |
+
token_type_ids = torch.zeros_like(input_ids)
|
112 |
+
token_mask = torch.ones_like(input_ids)
|
113 |
+
else:
|
114 |
+
idxs = torch.flip(torch.cumsum(torch.flip(token_type_ids, [-1]), axis=1), [-1])
|
115 |
+
token_mask = idxs > 0
|
116 |
+
token_mask = token_mask.byte()
|
117 |
+
ebd_output = self.embeddings(input_ids.to(torch.long), token_type_ids.to(torch.long), position_ids, token_mask)
|
118 |
+
embedding_output = ebd_output['embeddings']
|
119 |
+
encoder_output = self.encoder(embedding_output,
|
120 |
+
attention_mask,
|
121 |
+
output_all_encoded_layers=output_all_encoded_layers, return_att = return_att)
|
122 |
+
encoder_output.update(ebd_output)
|
123 |
+
return encoder_output
|
124 |
+
|
125 |
+
def apply_state(self, state = None):
|
126 |
+
""" Load state from previous loaded model state dictionary.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
state (:obj:`dict`, optional): State dictionary as the state returned by torch.module.state_dict(), default: `None`. \
|
130 |
+
If it's `None`, then will use the pre-trained state loaded via the constructor to re-initialize \
|
131 |
+
the `DeBERTa` model
|
132 |
+
"""
|
133 |
+
if self.pre_trained is None and state is None:
|
134 |
+
return
|
135 |
+
if state is None:
|
136 |
+
state, config = load_model_state(self.pre_trained)
|
137 |
+
self.config = config
|
138 |
+
|
139 |
+
prefix = ''
|
140 |
+
for k in state:
|
141 |
+
if 'embeddings.' in k:
|
142 |
+
if not k.startswith('embeddings.'):
|
143 |
+
prefix = k[:k.index('embeddings.')]
|
144 |
+
break
|
145 |
+
|
146 |
+
missing_keys = []
|
147 |
+
unexpected_keys = []
|
148 |
+
error_msgs = []
|
149 |
+
self._load_from_state_dict(state, prefix = prefix, local_metadata=None, strict=True, missing_keys=missing_keys, unexpected_keys=unexpected_keys, error_msgs=error_msgs)
|
modeling/disentangled_attention.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft, Inc. 2020
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
# Zhou Bo
|
7 |
+
# Date: 01/15/2020
|
8 |
+
#
|
9 |
+
|
10 |
+
"""
|
11 |
+
Disentangled SelfAttention module
|
12 |
+
"""
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import math
|
16 |
+
import torch
|
17 |
+
from torch import nn
|
18 |
+
import functools
|
19 |
+
import pdb
|
20 |
+
|
21 |
+
from .ops import *
|
22 |
+
from .da_utils import build_relative_position
|
23 |
+
|
24 |
+
import loguru
|
25 |
+
logger=loguru.logger
|
26 |
+
|
27 |
+
__all__=['DisentangledSelfAttention']
|
28 |
+
class DisentangledSelfAttention(nn.Module):
|
29 |
+
def __init__(self, config):
|
30 |
+
super().__init__()
|
31 |
+
self.num_attention_heads = config.num_attention_heads
|
32 |
+
_attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
33 |
+
self.attention_head_size = getattr(config, 'attention_head_size', _attention_head_size)
|
34 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
35 |
+
self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
36 |
+
self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
37 |
+
self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
38 |
+
|
39 |
+
self.share_att_key = getattr(config, 'share_att_key', False)
|
40 |
+
self.pos_att_type = [x.strip() for x in getattr(config, 'pos_att_type', 'c2p').lower().split('|')] # c2p|p2c
|
41 |
+
self.relative_attention = getattr(config, 'relative_attention', False)
|
42 |
+
|
43 |
+
if self.relative_attention:
|
44 |
+
self.position_buckets = getattr(config, 'position_buckets', -1)
|
45 |
+
self.max_relative_positions = getattr(config, 'max_relative_positions', -1)
|
46 |
+
if self.max_relative_positions <1:
|
47 |
+
self.max_relative_positions = config.max_position_embeddings
|
48 |
+
self.pos_ebd_size = self.max_relative_positions
|
49 |
+
if self.position_buckets>0:
|
50 |
+
self.pos_ebd_size = self.position_buckets
|
51 |
+
# For backward compitable
|
52 |
+
|
53 |
+
self.pos_dropout = StableDropout(config.hidden_dropout_prob)
|
54 |
+
|
55 |
+
if (not self.share_att_key):
|
56 |
+
if 'c2p' in self.pos_att_type or 'p2p' in self.pos_att_type:
|
57 |
+
self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
58 |
+
if 'p2c' in self.pos_att_type or 'p2p' in self.pos_att_type:
|
59 |
+
self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size)
|
60 |
+
|
61 |
+
self.dropout = StableDropout(config.attention_probs_dropout_prob)
|
62 |
+
self._register_load_state_dict_pre_hook(self._pre_load_hook)
|
63 |
+
|
64 |
+
def transpose_for_scores(self, x, attention_heads):
|
65 |
+
new_x_shape = x.size()[:-1] + (attention_heads, -1)
|
66 |
+
x = x.view(*new_x_shape)
|
67 |
+
return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1))
|
68 |
+
|
69 |
+
def forward(self, hidden_states, attention_mask, return_att=False, query_states=None, relative_pos=None, rel_embeddings=None):
|
70 |
+
if query_states is None:
|
71 |
+
query_states = hidden_states
|
72 |
+
query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads).float()
|
73 |
+
key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads).float()
|
74 |
+
value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads)
|
75 |
+
|
76 |
+
rel_att = None
|
77 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
78 |
+
scale_factor = 1
|
79 |
+
if 'c2p' in self.pos_att_type:
|
80 |
+
scale_factor += 1
|
81 |
+
if 'p2c' in self.pos_att_type:
|
82 |
+
scale_factor += 1
|
83 |
+
if 'p2p' in self.pos_att_type:
|
84 |
+
scale_factor += 1
|
85 |
+
scale = 1/math.sqrt(query_layer.size(-1)*scale_factor)
|
86 |
+
attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2)*scale)
|
87 |
+
if self.relative_attention:
|
88 |
+
rel_embeddings = self.pos_dropout(rel_embeddings)
|
89 |
+
rel_att = self.disentangled_attention_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor)
|
90 |
+
|
91 |
+
if rel_att is not None:
|
92 |
+
attention_scores = (attention_scores + rel_att)
|
93 |
+
attention_scores = (attention_scores - attention_scores.max(dim=-1, keepdim=True).values.detach()).to(hidden_states)
|
94 |
+
attention_scores = attention_scores.view(-1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1))
|
95 |
+
|
96 |
+
# bxhxlxd
|
97 |
+
_attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
|
98 |
+
attention_probs = self.dropout(_attention_probs)
|
99 |
+
context_layer = torch.bmm(attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer)
|
100 |
+
context_layer = context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1)).permute(0, 2, 1, 3).contiguous()
|
101 |
+
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
|
102 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
103 |
+
|
104 |
+
return {
|
105 |
+
'hidden_states': context_layer,
|
106 |
+
'attention_probs': _attention_probs,
|
107 |
+
'attention_logits': attention_scores
|
108 |
+
}
|
109 |
+
|
110 |
+
def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
|
111 |
+
if relative_pos is None:
|
112 |
+
q = query_layer.size(-2)
|
113 |
+
relative_pos = build_relative_position(q, key_layer.size(-2), bucket_size = self.position_buckets, max_position = self.max_relative_positions)
|
114 |
+
if relative_pos.dim()==2:
|
115 |
+
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
|
116 |
+
elif relative_pos.dim()==3:
|
117 |
+
relative_pos = relative_pos.unsqueeze(1)
|
118 |
+
# bxhxqxk
|
119 |
+
elif relative_pos.dim()!=4:
|
120 |
+
raise ValueError(f'Relative postion ids must be of dim 2 or 3 or 4. {relative_pos.dim()}')
|
121 |
+
|
122 |
+
att_span = self.pos_ebd_size
|
123 |
+
relative_pos = relative_pos.long().to(query_layer.device)
|
124 |
+
|
125 |
+
rel_embeddings = rel_embeddings[self.pos_ebd_size - att_span:self.pos_ebd_size + att_span, :].unsqueeze(0) #.repeat(query_layer.size(0)//self.num_attention_heads, 1, 1)
|
126 |
+
if self.share_att_key:
|
127 |
+
pos_query_layer = self.transpose_for_scores(self.query_proj(rel_embeddings), self.num_attention_heads)\
|
128 |
+
.repeat(query_layer.size(0)//self.num_attention_heads, 1, 1) #.split(self.all_head_size, dim=-1)
|
129 |
+
pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads)\
|
130 |
+
.repeat(query_layer.size(0)//self.num_attention_heads, 1, 1) #.split(self.all_head_size, dim=-1)
|
131 |
+
else:
|
132 |
+
if 'c2p' in self.pos_att_type or 'p2p' in self.pos_att_type:
|
133 |
+
pos_key_layer = self.transpose_for_scores(self.pos_key_proj(rel_embeddings), self.num_attention_heads)\
|
134 |
+
.repeat(query_layer.size(0)//self.num_attention_heads, 1, 1) #.split(self.all_head_size, dim=-1)
|
135 |
+
if 'p2c' in self.pos_att_type or 'p2p' in self.pos_att_type:
|
136 |
+
pos_query_layer = self.transpose_for_scores(self.pos_query_proj(rel_embeddings), self.num_attention_heads)\
|
137 |
+
.repeat(query_layer.size(0)//self.num_attention_heads, 1, 1) #.split(self.all_head_size, dim=-1)
|
138 |
+
|
139 |
+
score = 0
|
140 |
+
# content->position
|
141 |
+
if 'c2p' in self.pos_att_type:
|
142 |
+
scale = 1/math.sqrt(pos_key_layer.size(-1)*scale_factor)
|
143 |
+
c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2).to(query_layer)*scale)
|
144 |
+
c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span*2-1)
|
145 |
+
c2p_att = torch.gather(c2p_att, dim=-1, index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]))
|
146 |
+
try:
|
147 |
+
score += c2p_att
|
148 |
+
except:
|
149 |
+
print(c2p_att.size())
|
150 |
+
|
151 |
+
# position->content
|
152 |
+
if 'p2c' in self.pos_att_type or 'p2p' in self.pos_att_type:
|
153 |
+
scale = 1/math.sqrt(pos_query_layer.size(-1)*scale_factor)
|
154 |
+
if key_layer.size(-2) != query_layer.size(-2):
|
155 |
+
r_pos = build_relative_position(key_layer.size(-2), key_layer.size(-2), bucket_size = self.position_buckets, max_position = self.max_relative_positions).to(query_layer.device)
|
156 |
+
r_pos = r_pos.unsqueeze(0)
|
157 |
+
else:
|
158 |
+
r_pos = relative_pos
|
159 |
+
|
160 |
+
p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span*2-1)
|
161 |
+
if query_layer.size(-2) != key_layer.size(-2):
|
162 |
+
pos_index = relative_pos[:, :, :, 0].unsqueeze(-1)
|
163 |
+
|
164 |
+
if 'p2c' in self.pos_att_type:
|
165 |
+
p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2).to(key_layer)*scale)
|
166 |
+
p2c_att = torch.gather(p2c_att, dim=-1, index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)])).transpose(-1,-2)
|
167 |
+
if query_layer.size(-2) != key_layer.size(-2):
|
168 |
+
p2c_att = torch.gather(p2c_att, dim=-2, index=pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2))))
|
169 |
+
score += p2c_att
|
170 |
+
|
171 |
+
# position->position
|
172 |
+
if 'p2p' in self.pos_att_type:
|
173 |
+
pos_query = pos_query_layer[:,:,att_span:,:]
|
174 |
+
p2p_att = torch.matmul(pos_query, pos_key_layer.transpose(-1, -2))
|
175 |
+
p2p_att = p2p_att.expand(query_layer.size()[:2] + p2p_att.size()[2:])
|
176 |
+
if query_layer.size(-2) != key_layer.size(-2):
|
177 |
+
p2p_att = torch.gather(p2p_att, dim=-2, index=pos_index.expand(query_layer.size()[:2] + (pos_index.size(-2), p2p_att.size(-1))))
|
178 |
+
p2p_att = torch.gather(p2p_att, dim=-1, index=c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)]))
|
179 |
+
score += p2p_att
|
180 |
+
|
181 |
+
return score
|
182 |
+
|
183 |
+
def _pre_load_hook(self, state_dict, prefix, local_metadata, strict,
|
184 |
+
missing_keys, unexpected_keys, error_msgs):
|
185 |
+
self_state = self.state_dict()
|
186 |
+
if ((prefix + 'query_proj.weight') not in state_dict) and ((prefix + 'in_proj.weight') in state_dict):
|
187 |
+
v1_proj = state_dict[prefix+'in_proj.weight']
|
188 |
+
v1_proj = v1_proj.unsqueeze(0).reshape(self.num_attention_heads, -1, v1_proj.size(-1))
|
189 |
+
q,k,v=v1_proj.chunk(3, dim=1)
|
190 |
+
state_dict[prefix + 'query_proj.weight'] = q.reshape(-1, v1_proj.size(-1))
|
191 |
+
state_dict[prefix + 'key_proj.weight'] = k.reshape(-1, v1_proj.size(-1))
|
192 |
+
state_dict[prefix + 'key_proj.bias'] = self_state['key_proj.bias']
|
193 |
+
state_dict[prefix + 'value_proj.weight'] = v.reshape(-1, v1_proj.size(-1))
|
194 |
+
v1_query_bias = state_dict[prefix + 'q_bias']
|
195 |
+
state_dict[prefix + 'query_proj.bias'] = v1_query_bias
|
196 |
+
v1_value_bias = state_dict[prefix +'v_bias']
|
197 |
+
state_dict[prefix + 'value_proj.bias'] = v1_value_bias
|
198 |
+
|
199 |
+
v1_pos_key_proj = state_dict[prefix + 'pos_proj.weight']
|
200 |
+
state_dict[prefix + 'pos_key_proj.weight'] = v1_pos_key_proj
|
201 |
+
v1_pos_query_proj = state_dict[prefix + 'pos_q_proj.weight']
|
202 |
+
state_dict[prefix + 'pos_query_proj.weight'] = v1_pos_query_proj
|
203 |
+
v1_pos_query_proj_bias = state_dict[prefix + 'pos_q_proj.bias']
|
204 |
+
state_dict[prefix + 'pos_query_proj.bias'] = v1_pos_query_proj_bias
|
205 |
+
state_dict[prefix + 'pos_key_proj.bias'] = self_state['pos_key_proj.bias']
|
206 |
+
|
207 |
+
del state_dict[prefix + 'in_proj.weight']
|
208 |
+
del state_dict[prefix + 'q_bias']
|
209 |
+
del state_dict[prefix + 'v_bias']
|
210 |
+
del state_dict[prefix + 'pos_proj.weight']
|
211 |
+
del state_dict[prefix + 'pos_q_proj.weight']
|
212 |
+
del state_dict[prefix + 'pos_q_proj.bias']
|
modeling/file_utils.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Utilities for working with the local dataset cache.
|
3 |
+
This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp
|
4 |
+
Copyright by the AllenNLP authors.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import os
|
8 |
+
import logging
|
9 |
+
import shutil
|
10 |
+
import tempfile
|
11 |
+
import json
|
12 |
+
from urllib.parse import urlparse
|
13 |
+
from pathlib import Path
|
14 |
+
from typing import Optional, Tuple, Union, IO, Callable, Set
|
15 |
+
from hashlib import sha256
|
16 |
+
from functools import wraps
|
17 |
+
|
18 |
+
from tqdm import tqdm
|
19 |
+
|
20 |
+
import boto3
|
21 |
+
from botocore.exceptions import ClientError
|
22 |
+
import requests
|
23 |
+
|
24 |
+
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
|
25 |
+
|
26 |
+
PYTORCH_PRETRAINED_BERT_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
|
27 |
+
Path.home() / '.pytorch_pretrained_bert'))
|
28 |
+
|
29 |
+
|
30 |
+
def url_to_filename(url: str, etag: str = None) -> str:
|
31 |
+
"""
|
32 |
+
Convert `url` into a hashed filename in a repeatable way.
|
33 |
+
If `etag` is specified, append its hash to the url's, delimited
|
34 |
+
by a period.
|
35 |
+
"""
|
36 |
+
url_bytes = url.encode('utf-8')
|
37 |
+
url_hash = sha256(url_bytes)
|
38 |
+
filename = url_hash.hexdigest()
|
39 |
+
|
40 |
+
if etag:
|
41 |
+
etag_bytes = etag.encode('utf-8')
|
42 |
+
etag_hash = sha256(etag_bytes)
|
43 |
+
filename += '.' + etag_hash.hexdigest()
|
44 |
+
|
45 |
+
return filename
|
46 |
+
|
47 |
+
|
48 |
+
def filename_to_url(filename: str, cache_dir: Union[str, Path] = None) -> Tuple[str, str]:
|
49 |
+
"""
|
50 |
+
Return the url and etag (which may be ``None``) stored for `filename`.
|
51 |
+
Raise ``FileNotFoundError`` if `filename` or its stored metadata do not exist.
|
52 |
+
"""
|
53 |
+
if cache_dir is None:
|
54 |
+
cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
|
55 |
+
if isinstance(cache_dir, Path):
|
56 |
+
cache_dir = str(cache_dir)
|
57 |
+
|
58 |
+
cache_path = os.path.join(cache_dir, filename)
|
59 |
+
if not os.path.exists(cache_path):
|
60 |
+
raise FileNotFoundError("file {} not found".format(cache_path))
|
61 |
+
|
62 |
+
meta_path = cache_path + '.json'
|
63 |
+
if not os.path.exists(meta_path):
|
64 |
+
raise FileNotFoundError("file {} not found".format(meta_path))
|
65 |
+
|
66 |
+
with open(meta_path) as meta_file:
|
67 |
+
metadata = json.load(meta_file)
|
68 |
+
url = metadata['url']
|
69 |
+
etag = metadata['etag']
|
70 |
+
|
71 |
+
return url, etag
|
72 |
+
|
73 |
+
|
74 |
+
def cached_path(url_or_filename: Union[str, Path], cache_dir: Union[str, Path] = None) -> str:
|
75 |
+
"""
|
76 |
+
Given something that might be a URL (or might be a local path),
|
77 |
+
determine which. If it's a URL, download the file and cache it, and
|
78 |
+
return the path to the cached file. If it's already a local path,
|
79 |
+
make sure the file exists and then return the path.
|
80 |
+
"""
|
81 |
+
if cache_dir is None:
|
82 |
+
cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
|
83 |
+
if isinstance(url_or_filename, Path):
|
84 |
+
url_or_filename = str(url_or_filename)
|
85 |
+
if isinstance(cache_dir, Path):
|
86 |
+
cache_dir = str(cache_dir)
|
87 |
+
|
88 |
+
parsed = urlparse(url_or_filename)
|
89 |
+
|
90 |
+
if parsed.scheme in ('http', 'https', 's3'):
|
91 |
+
# URL, so get it from the cache (downloading if necessary)
|
92 |
+
return get_from_cache(url_or_filename, cache_dir)
|
93 |
+
elif os.path.exists(url_or_filename):
|
94 |
+
# File, and it exists.
|
95 |
+
return url_or_filename
|
96 |
+
elif parsed.scheme == '':
|
97 |
+
# File, but it doesn't exist.
|
98 |
+
raise FileNotFoundError("file {} not found".format(url_or_filename))
|
99 |
+
else:
|
100 |
+
# Something unknown
|
101 |
+
raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))
|
102 |
+
|
103 |
+
|
104 |
+
def split_s3_path(url: str) -> Tuple[str, str]:
|
105 |
+
"""Split a full s3 path into the bucket name and path."""
|
106 |
+
parsed = urlparse(url)
|
107 |
+
if not parsed.netloc or not parsed.path:
|
108 |
+
raise ValueError("bad s3 path {}".format(url))
|
109 |
+
bucket_name = parsed.netloc
|
110 |
+
s3_path = parsed.path
|
111 |
+
# Remove '/' at beginning of path.
|
112 |
+
if s3_path.startswith("/"):
|
113 |
+
s3_path = s3_path[1:]
|
114 |
+
return bucket_name, s3_path
|
115 |
+
|
116 |
+
|
117 |
+
def s3_request(func: Callable):
|
118 |
+
"""
|
119 |
+
Wrapper function for s3 requests in order to create more helpful error
|
120 |
+
messages.
|
121 |
+
"""
|
122 |
+
|
123 |
+
@wraps(func)
|
124 |
+
def wrapper(url: str, *args, **kwargs):
|
125 |
+
try:
|
126 |
+
return func(url, *args, **kwargs)
|
127 |
+
except ClientError as exc:
|
128 |
+
if int(exc.response["Error"]["Code"]) == 404:
|
129 |
+
raise FileNotFoundError("file {} not found".format(url))
|
130 |
+
else:
|
131 |
+
raise
|
132 |
+
|
133 |
+
return wrapper
|
134 |
+
|
135 |
+
|
136 |
+
@s3_request
|
137 |
+
def s3_etag(url: str) -> Optional[str]:
|
138 |
+
"""Check ETag on S3 object."""
|
139 |
+
s3_resource = boto3.resource("s3")
|
140 |
+
bucket_name, s3_path = split_s3_path(url)
|
141 |
+
s3_object = s3_resource.Object(bucket_name, s3_path)
|
142 |
+
return s3_object.e_tag
|
143 |
+
|
144 |
+
|
145 |
+
@s3_request
|
146 |
+
def s3_get(url: str, temp_file: IO) -> None:
|
147 |
+
"""Pull a file directly from S3."""
|
148 |
+
s3_resource = boto3.resource("s3")
|
149 |
+
bucket_name, s3_path = split_s3_path(url)
|
150 |
+
s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file)
|
151 |
+
|
152 |
+
|
153 |
+
def http_get(url: str, temp_file: IO) -> None:
|
154 |
+
req = requests.get(url, stream=True)
|
155 |
+
content_length = req.headers.get('Content-Length')
|
156 |
+
total = int(content_length) if content_length is not None else None
|
157 |
+
progress = tqdm(unit="B", total=total)
|
158 |
+
for chunk in req.iter_content(chunk_size=1024):
|
159 |
+
if chunk: # filter out keep-alive new chunks
|
160 |
+
progress.update(len(chunk))
|
161 |
+
temp_file.write(chunk)
|
162 |
+
progress.close()
|
163 |
+
|
164 |
+
|
165 |
+
def get_from_cache(url: str, cache_dir: Union[str, Path] = None) -> str:
|
166 |
+
"""
|
167 |
+
Given a URL, look for the corresponding dataset in the local cache.
|
168 |
+
If it's not there, download it. Then return the path to the cached file.
|
169 |
+
"""
|
170 |
+
if cache_dir is None:
|
171 |
+
cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
|
172 |
+
if isinstance(cache_dir, Path):
|
173 |
+
cache_dir = str(cache_dir)
|
174 |
+
|
175 |
+
os.makedirs(cache_dir, exist_ok=True)
|
176 |
+
|
177 |
+
# Get eTag to add to filename, if it exists.
|
178 |
+
if url.startswith("s3://"):
|
179 |
+
etag = s3_etag(url)
|
180 |
+
else:
|
181 |
+
response = requests.head(url, allow_redirects=True)
|
182 |
+
if response.status_code != 200:
|
183 |
+
raise IOError("HEAD request failed for url {} with status code {}"
|
184 |
+
.format(url, response.status_code))
|
185 |
+
etag = response.headers.get("ETag")
|
186 |
+
|
187 |
+
filename = url_to_filename(url, etag)
|
188 |
+
|
189 |
+
# get cache path to put the file
|
190 |
+
cache_path = os.path.join(cache_dir, filename)
|
191 |
+
|
192 |
+
if not os.path.exists(cache_path):
|
193 |
+
# Download to temporary file, then copy to cache dir once finished.
|
194 |
+
# Otherwise you get corrupt cache entries if the download gets interrupted.
|
195 |
+
with tempfile.NamedTemporaryFile() as temp_file:
|
196 |
+
logger.info("%s not found in cache, downloading to %s", url, temp_file.name)
|
197 |
+
|
198 |
+
# GET file object
|
199 |
+
if url.startswith("s3://"):
|
200 |
+
s3_get(url, temp_file)
|
201 |
+
else:
|
202 |
+
http_get(url, temp_file)
|
203 |
+
|
204 |
+
# we are copying the file before closing it, so flush to avoid truncation
|
205 |
+
temp_file.flush()
|
206 |
+
# shutil.copyfileobj() starts at the current position, so go to the start
|
207 |
+
temp_file.seek(0)
|
208 |
+
|
209 |
+
logger.info("copying %s to cache at %s", temp_file.name, cache_path)
|
210 |
+
with open(cache_path, 'wb') as cache_file:
|
211 |
+
shutil.copyfileobj(temp_file, cache_file)
|
212 |
+
|
213 |
+
logger.info("creating metadata file for %s", cache_path)
|
214 |
+
meta = {'url': url, 'etag': etag}
|
215 |
+
meta_path = cache_path + '.json'
|
216 |
+
with open(meta_path, 'w') as meta_file:
|
217 |
+
json.dump(meta, meta_file)
|
218 |
+
|
219 |
+
logger.info("removing temp file %s", temp_file.name)
|
220 |
+
|
221 |
+
return cache_path
|
222 |
+
|
223 |
+
|
224 |
+
def read_set_from_file(filename: str) -> Set[str]:
|
225 |
+
'''
|
226 |
+
Extract a de-duped collection (set) of text from a file.
|
227 |
+
Expected file format is one item per line.
|
228 |
+
'''
|
229 |
+
collection = set()
|
230 |
+
with open(filename, 'r', encoding='utf-8') as file_:
|
231 |
+
for line in file_:
|
232 |
+
collection.add(line.rstrip())
|
233 |
+
return collection
|
234 |
+
|
235 |
+
|
236 |
+
def get_file_extension(path: str, dot=True, lower: bool = True):
|
237 |
+
ext = os.path.splitext(path)[1]
|
238 |
+
ext = ext if dot else ext[1:]
|
239 |
+
return ext.lower() if lower else ext
|
modeling/flash.py
ADDED
@@ -0,0 +1,794 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Zhoubo
|
3 |
+
#
|
4 |
+
"""
|
5 |
+
FLASH: https://arxiv.org/abs/2202.10447
|
6 |
+
"""
|
7 |
+
import copy
|
8 |
+
import torch
|
9 |
+
import os
|
10 |
+
from collections import Sequence
|
11 |
+
import json
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from transformers.activations import ACT2FN
|
17 |
+
from .modeling import *
|
18 |
+
from .ops import XSoftmax, sequence_masking
|
19 |
+
|
20 |
+
from .bert import *
|
21 |
+
from .config import ModelConfig
|
22 |
+
from .cache_utils import load_model_state
|
23 |
+
import einops
|
24 |
+
|
25 |
+
|
26 |
+
class ScaleNorm(nn.Module):
|
27 |
+
def __init__(self, eps=1e-5):
|
28 |
+
super().__init__()
|
29 |
+
self.eps = eps
|
30 |
+
self.scala = nn.Parameter(torch.ones(1))
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
mean_square = (x ** 2).mean(dim=-1, keepdim=True)
|
34 |
+
x = x * torch.rsqrt(mean_square + self.eps) * self.scala
|
35 |
+
return x
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
class OffsetScale(nn.Module):
|
40 |
+
def __init__(self, dim, heads = 1):
|
41 |
+
super().__init__()
|
42 |
+
self.gamma = nn.Parameter(torch.ones(heads, dim))
|
43 |
+
self.beta = nn.Parameter(torch.zeros(heads, dim))
|
44 |
+
# nn.init.normal_(self.gamma, std = 0.02)
|
45 |
+
# nn.init.xavier_uniform_(self.gamma)
|
46 |
+
|
47 |
+
def forward(self, x):
|
48 |
+
out = (x * self.gamma) + self.beta
|
49 |
+
return out
|
50 |
+
|
51 |
+
|
52 |
+
class ScaledSinuEmbedding(nn.Module):
|
53 |
+
def __init__(self, dim):
|
54 |
+
super().__init__()
|
55 |
+
self.scale = nn.Parameter(torch.ones(1,))
|
56 |
+
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
57 |
+
self.register_buffer('inv_freq', inv_freq)
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
n, device = x.shape[1], x.device
|
61 |
+
t = torch.arange(n, device = device).type_as(self.inv_freq)
|
62 |
+
sinu = torch.einsum('i , j -> i j', t, self.inv_freq)
|
63 |
+
emb = torch.cat((sinu.sin(), sinu.cos()), dim = -1)
|
64 |
+
return emb * self.scale
|
65 |
+
|
66 |
+
|
67 |
+
def RoPE(x, dim):
|
68 |
+
"""
|
69 |
+
:param x: input tensor
|
70 |
+
:param dim: oprate dimension
|
71 |
+
:return: tensor
|
72 |
+
"""
|
73 |
+
shape = x.shape
|
74 |
+
if isinstance(dim, int):
|
75 |
+
dim = [dim]
|
76 |
+
|
77 |
+
spatial_shape = [shape[i] for i in dim]
|
78 |
+
total_len = 1
|
79 |
+
for i in spatial_shape:
|
80 |
+
total_len *= i
|
81 |
+
position = torch.reshape(torch.arange(total_len, dtype=torch.float, device=x.device), spatial_shape)
|
82 |
+
|
83 |
+
for i in range(dim[-1] + 1, len(shape) - 1, 1):
|
84 |
+
position = torch.unsqueeze(position, dim=-1)
|
85 |
+
|
86 |
+
half_size = shape[-1] // 2
|
87 |
+
freq_seq = -torch.arange(half_size, dtype=torch.float, device=x.device) / float(half_size)
|
88 |
+
inv_freq = 10000 ** -freq_seq
|
89 |
+
sinusoid = torch.einsum("...,d->...d", position, inv_freq)
|
90 |
+
sin = torch.sin(sinusoid).repeat_interleave(2, -1)
|
91 |
+
cos = torch.cos(sinusoid).repeat_interleave(2, -1)
|
92 |
+
tensor_cross = torch.stack([-x[..., 1:: 2], x[..., :: 2]], -1).reshape(x.shape)
|
93 |
+
# x1, x2 = torch.chunk(x, 2, dim=-1)
|
94 |
+
# return torch.cat([x1 * cos - x2 * sin, x2 * cos + x1 * sin], dim=-1)
|
95 |
+
return x * cos + tensor_cross * sin
|
96 |
+
|
97 |
+
|
98 |
+
def rel_pos_bias(seq_len, s):
|
99 |
+
a = torch.rand([1, s], dtype=torch.float)
|
100 |
+
b = torch.rand([1, s], dtype=torch.float)
|
101 |
+
w = torch.rand([2 * seq_len - 1], dtype=torch.float)
|
102 |
+
if seq_len <= 512:
|
103 |
+
t = F.pad(w[: 2 * seq_len - 1], [0, seq_len]).repeat(seq_len)
|
104 |
+
t = t[..., :-seq_len].reshape(-1, seq_len, 3 * seq_len - 2)
|
105 |
+
r = (2 * seq_len - 1) // 2
|
106 |
+
t = t[..., r:-r]
|
107 |
+
else:
|
108 |
+
a = RoPE(a.repeat(seq_len, 1), dim=[0])
|
109 |
+
b = RoPE(b.repeat(seq_len, 1), dim=[0])
|
110 |
+
t = torch.einsum("mk,nk->mn", a, b)
|
111 |
+
return t
|
112 |
+
|
113 |
+
def squared_relu(x, attention_mask, dim=-1):
|
114 |
+
rmask = ~(attention_mask.bool())
|
115 |
+
x = x.masked_fill(rmask, 0)
|
116 |
+
return torch.square(F.relu(x))
|
117 |
+
|
118 |
+
|
119 |
+
def attention_normalize(a, axis=-1, mask=None, fn='softmax'):
|
120 |
+
if fn == 'softmax':
|
121 |
+
return XSoftmax.apply(a, mask, axis)
|
122 |
+
else:
|
123 |
+
mask_ = a > -float('inf') / 10
|
124 |
+
# mask_ = mask_.byte()
|
125 |
+
mask_ = torch.sum(mask_, axis=axis, keepdim=True)
|
126 |
+
l = torch.maximum(mask_, torch.ones_like(mask_))
|
127 |
+
if fn == 'squared_relu':
|
128 |
+
rmask = ~(mask.bool())
|
129 |
+
a = a.masked_fill(rmask, 0)
|
130 |
+
return torch.square(F.relu(a)) / l
|
131 |
+
elif fn == 'softmax_plus':
|
132 |
+
return XSoftmax.apply(a * torch.log(l) / np.log(512), mask, axis)
|
133 |
+
return a
|
134 |
+
|
135 |
+
|
136 |
+
class GAULinear(nn.Linear):
|
137 |
+
def init_weight(self):
|
138 |
+
nn.init.xavier_uniform_(self.weight)
|
139 |
+
|
140 |
+
|
141 |
+
class GatedAttentionUnit(nn.Module):
|
142 |
+
"""
|
143 |
+
GAU Block: Gate Attention Unit
|
144 |
+
"""
|
145 |
+
def __init__(
|
146 |
+
self,
|
147 |
+
max_seq_length,
|
148 |
+
hidden_size,
|
149 |
+
attention_key_size=128,
|
150 |
+
activation='swish',
|
151 |
+
use_bias=True,
|
152 |
+
attention_norm_type='squared_relu',
|
153 |
+
attention_scale=True,
|
154 |
+
dropout=0.1,
|
155 |
+
pre_norm=False,
|
156 |
+
norm_type="layer_norm",
|
157 |
+
eps=1e-5,
|
158 |
+
shift_token=False,
|
159 |
+
use_rel_bias=False,
|
160 |
+
add_residual=True,
|
161 |
+
**kwargs,):
|
162 |
+
|
163 |
+
super(GatedAttentionUnit, self).__init__(**kwargs)
|
164 |
+
self.max_seq_length = max_seq_length
|
165 |
+
self.units = hidden_size
|
166 |
+
self.intermediate_size = self.units * 2
|
167 |
+
self.key_size = attention_key_size
|
168 |
+
self.activation = activation
|
169 |
+
self.use_bias = use_bias
|
170 |
+
self.attention_norm_type = attention_norm_type
|
171 |
+
self.attention_scale = attention_scale
|
172 |
+
self.dropout = StableDropout(dropout)
|
173 |
+
self.i_dense = nn.Sequential(
|
174 |
+
nn.Linear(self.units, 2 * self.intermediate_size + self.key_size, bias=self.use_bias),
|
175 |
+
nn.SiLU()
|
176 |
+
)
|
177 |
+
self.o_dense = nn.Sequential(
|
178 |
+
nn.Linear(self.intermediate_size, self.units, bias=self.use_bias),
|
179 |
+
self.dropout)
|
180 |
+
self.q_scaleoffset = OffsetScale(self.key_size)
|
181 |
+
self.k_scaleoffset = OffsetScale(self.key_size)
|
182 |
+
self.pre_norm = pre_norm
|
183 |
+
self.norm = (nn.LayerNorm(hidden_size, eps=eps) if norm_type.lower() == "layer_norm" else ScaleNorm(eps=eps))
|
184 |
+
self.add_residual = add_residual
|
185 |
+
|
186 |
+
def forward(self, x, attention_mask=None, **kwargs):
|
187 |
+
shortcut = x
|
188 |
+
|
189 |
+
if self.pre_norm:
|
190 |
+
x = self.norm(x)
|
191 |
+
|
192 |
+
x = self.i_dense(x)
|
193 |
+
u, v, qk = torch.split(x, [self.intermediate_size, self.intermediate_size, self.key_size], dim=-1)
|
194 |
+
q, k = self.q_scaleoffset(qk), self.k_scaleoffset(qk)
|
195 |
+
qk = RoPE(torch.stack([q, k], 2), dim=1)
|
196 |
+
q, k = qk[:, :, 0], qk[:, :, 1]
|
197 |
+
a = torch.einsum('bmd,bnd->bmn', q, k)
|
198 |
+
if self.attention_scale:
|
199 |
+
a = a / self.key_size**0.5
|
200 |
+
a = sequence_masking(a, attention_mask, '-inf', -1)
|
201 |
+
A = attention_normalize(a, -1, fn=self.attention_norm_type)
|
202 |
+
if self.dropout:
|
203 |
+
A = self.dropout(A)
|
204 |
+
out = self.o_dense(u * torch.einsum('bmn,bnd->bmd', A, v))
|
205 |
+
|
206 |
+
if self.add_residual:
|
207 |
+
out = out + shortcut
|
208 |
+
if not self.pre_norm:
|
209 |
+
out = self.norm(out)
|
210 |
+
return out
|
211 |
+
# # 加入RoPE
|
212 |
+
# if p_bias == 'rotary':
|
213 |
+
# qk = K.stack([q, k], 2)
|
214 |
+
# qk = apply_rotary_position_embeddings(inputs[n], qk)[0]
|
215 |
+
# q, k = qk[:, :, 0], qk[:, :, 1]
|
216 |
+
# # Attention
|
217 |
+
# a = tf.einsum('bmd,bnd->bmn', q, k)
|
218 |
+
# if self.attention_scale:
|
219 |
+
# a = a / self.key_size**0.5
|
220 |
+
# if a_bias is not None:
|
221 |
+
# a = a + a_bias
|
222 |
+
# a = sequence_masking(a, mask, '-inf', -1)
|
223 |
+
# A = attention_normalize(a, -1, self.normalization)
|
224 |
+
# if self.attention_dropout:
|
225 |
+
# A = Dropout(self.attention_dropout)(A)
|
226 |
+
# # 计算输出
|
227 |
+
# o = self.o_dense(u * tf.einsum('bmn,bnd->bmd', A, v))
|
228 |
+
|
229 |
+
# return o
|
230 |
+
|
231 |
+
class GAU(nn.Module):
|
232 |
+
def __init__(self, max_seq_length, hidden_size, expansion_factor=2, s=128, norm_type="layer_norm", eps=1e-5,
|
233 |
+
hidden_act="silu", shift_token=False, use_rel_bias=False, attention_norm_type='softmax',
|
234 |
+
pre_norm=False, dropout=0, add_residual = True):
|
235 |
+
super(GAU, self).__init__()
|
236 |
+
self.max_seq_length = max_seq_length
|
237 |
+
self.shift_token = shift_token
|
238 |
+
hidden_dim = int(expansion_factor * hidden_size)
|
239 |
+
self.norm = (nn.LayerNorm(hidden_size, eps=eps) if norm_type == "layer_norm" else ScaleNorm(eps=eps))
|
240 |
+
self.use_rel_bias = use_rel_bias
|
241 |
+
self.attention_norm_type = attention_norm_type
|
242 |
+
# if attention_norm_type == 'relu':
|
243 |
+
# self.attention_norm_func = squared_relu
|
244 |
+
# else:
|
245 |
+
# self.attention_norm_func = XSoftmax.apply
|
246 |
+
# self.norm = norm_klass(hidden_size)
|
247 |
+
|
248 |
+
self.dropout = nn.Dropout(dropout)
|
249 |
+
|
250 |
+
self.to_hidden = nn.Sequential(
|
251 |
+
nn.Linear(hidden_size, hidden_dim * 2),
|
252 |
+
nn.SiLU()
|
253 |
+
)
|
254 |
+
|
255 |
+
self.to_qk = nn.Sequential(
|
256 |
+
nn.Linear(hidden_size, s),
|
257 |
+
nn.SiLU()
|
258 |
+
)
|
259 |
+
|
260 |
+
self.offsetscale = OffsetScale(s, heads = 2)
|
261 |
+
|
262 |
+
self.to_out = nn.Sequential(
|
263 |
+
nn.Linear(hidden_dim, hidden_size),
|
264 |
+
nn.Dropout(dropout)
|
265 |
+
)
|
266 |
+
|
267 |
+
self.add_residual = add_residual
|
268 |
+
self.act_fn = ACT2FN[hidden_act]
|
269 |
+
self.pre_norm = pre_norm
|
270 |
+
|
271 |
+
|
272 |
+
def forward(
|
273 |
+
self,
|
274 |
+
x,
|
275 |
+
relative_pos = None,
|
276 |
+
attention_mask = None
|
277 |
+
):
|
278 |
+
seq_len, device = x.shape[-2], x.device
|
279 |
+
if self.pre_norm:
|
280 |
+
normed_x = self.norm(x)
|
281 |
+
else:
|
282 |
+
normed_x = x
|
283 |
+
v, gate = self.to_hidden(normed_x).chunk(2, dim = -1)
|
284 |
+
|
285 |
+
qk = self.to_qk(normed_x)
|
286 |
+
base = self.offsetscale(qk)
|
287 |
+
base = RoPE(base, 1)
|
288 |
+
q, k = base.unbind(dim = -2)
|
289 |
+
sim = torch.einsum('b i d, b j d -> b i j', q, k)
|
290 |
+
|
291 |
+
if relative_pos is not None:
|
292 |
+
sim = sim + relative_pos
|
293 |
+
if attention_mask is not None:
|
294 |
+
if attention_mask.dim() < 3:
|
295 |
+
attention_mask = einops.rearrange(attention_mask, 'b j -> b 1 j')
|
296 |
+
# attn = attn.masked_fill(~attention_mask.bool(), 0.)
|
297 |
+
attn = attention_normalize(sim, mask=attention_mask, fn=self.attention_norm_type)
|
298 |
+
# attn = F.relu(sim) ** 2 / seq_len# / q.size(-1)
|
299 |
+
# logger.info(attn.max())
|
300 |
+
attn = self.dropout(attn)
|
301 |
+
# if self.causal:
|
302 |
+
# causal_mask = torch.ones((seq_len, seq_len), dtype = torch.bool, device = device).triu(1)
|
303 |
+
# attn = attn.masked_fill(causal_mask, 0.)
|
304 |
+
|
305 |
+
out = torch.einsum('b i j, b j d -> b i d', attn, v)
|
306 |
+
out = out * gate
|
307 |
+
|
308 |
+
out = self.to_out(out)
|
309 |
+
|
310 |
+
if self.add_residual:
|
311 |
+
out = out + x
|
312 |
+
if not self.pre_norm:
|
313 |
+
out = self.norm(out)
|
314 |
+
return out
|
315 |
+
|
316 |
+
|
317 |
+
class GAULayer(nn.Module):
|
318 |
+
def __init__(self, config, shift_token=False, use_ffn=False):
|
319 |
+
super(GAULayer, self).__init__()
|
320 |
+
self.attention = GatedAttentionUnit(config.max_position_embeddings, config.hidden_size,
|
321 |
+
shift_token=shift_token, use_rel_bias=config.use_rel_bias,
|
322 |
+
norm_type=config.norm_type, attention_norm_type=config.attention_norm_type,
|
323 |
+
pre_norm=config.pre_norm, dropout=config.hidden_dropout_prob)
|
324 |
+
if use_ffn:
|
325 |
+
self.intermediate = BertIntermediate(config)
|
326 |
+
self.output = BertOutput(config)
|
327 |
+
self.use_ffn = use_ffn
|
328 |
+
|
329 |
+
def forward(self, hidden_states, attention_mask, return_att=False, query_states=None, relative_pos=None, rel_embeddings=None):
|
330 |
+
attention_output = self.attention(hidden_states, attention_mask=attention_mask, relative_pos=relative_pos)
|
331 |
+
if self.use_ffn:
|
332 |
+
intermediate_output = self.intermediate(attention_output)
|
333 |
+
layer_output = self.output(intermediate_output, attention_output)
|
334 |
+
return layer_output
|
335 |
+
else:
|
336 |
+
return attention_output
|
337 |
+
|
338 |
+
|
339 |
+
class FlashBlock(nn.Module):
|
340 |
+
"""
|
341 |
+
FLASH Block: Fast Linear Attention with a Single Head
|
342 |
+
"""
|
343 |
+
|
344 |
+
def __init__(self, model_size, sequence_length, chunk_size=256, expansion_factor=2, s=128, norm_type="layer_norm", eps=1e-5,
|
345 |
+
hidden_act="silu"):
|
346 |
+
super(FlashBlock, self).__init__()
|
347 |
+
self.s = s
|
348 |
+
self.eps = eps
|
349 |
+
self.norm_type = norm_type
|
350 |
+
self.model_size = model_size
|
351 |
+
self.chunk_size = chunk_size
|
352 |
+
self.hidden_act = hidden_act
|
353 |
+
self.sequence_length = sequence_length
|
354 |
+
self.expansion_factor = expansion_factor
|
355 |
+
self.e = int(self.model_size * self.expansion_factor)
|
356 |
+
|
357 |
+
self.dense1 = nn.Linear(self.model_size, 2 * self.e + self.s, bias=True)
|
358 |
+
self.gamma = nn.Parameter(torch.rand((4, self.s)))
|
359 |
+
self.beta = nn.Parameter(torch.rand((4, self.s)))
|
360 |
+
self.dense2 = nn.Linear(self.e, self.model_size)
|
361 |
+
self.LayerNorm = (
|
362 |
+
nn.LayerNorm(model_size, eps=self.eps) if norm_type == "layer_norm" else ScaleNorm(eps=self.eps))
|
363 |
+
|
364 |
+
nn.init.xavier_normal_(self.dense1.weight)
|
365 |
+
self.act_fn = ACT2FN(self.hidden_act)
|
366 |
+
|
367 |
+
def global_linear_attention(self, query, key, value, causal):
|
368 |
+
if causal:
|
369 |
+
kv = torch.einsum("bgcs, bgce->bgse", key, value)
|
370 |
+
kv = torch.cumsum(kv, dim=1)
|
371 |
+
lin_v = torch.einsum("bgcs, bgse->bgce", query, kv)
|
372 |
+
return lin_v
|
373 |
+
else:
|
374 |
+
kv = torch.einsum("bgcs, bgce->bse", key, value)
|
375 |
+
lin_v = torch.einsum("bgcs, bse->bgce", query, kv)
|
376 |
+
return lin_v
|
377 |
+
|
378 |
+
def segment_ids_to_mask(self, segment_ids, causal=False):
|
379 |
+
"""Generate the segment mask from the segment ids.
|
380 |
+
The segment mask is used to remove the attention between tokens in different documents.
|
381 |
+
"""
|
382 |
+
min_ids, max_ids = torch.min(segment_ids, dim=-1).values, torch.max(segment_ids, dim=-1).values
|
383 |
+
# 1.0 indicates in the same group and 0.0 otherwise
|
384 |
+
mask = torch.logical_and(torch.less_equal(min_ids[:, :, None], max_ids[:, None, :]),
|
385 |
+
torch.greater_equal(max_ids[:, :, None], min_ids[:, None, :]))
|
386 |
+
mask = torch.tensor(mask, torch.float32)
|
387 |
+
if causal:
|
388 |
+
g = segment_ids.size()[1]
|
389 |
+
causal_mask = 1.0 - torch.triu(torch.ones([g, g], dtype=torch.float32)) # 保留主对角线以及主对角线以上的元素
|
390 |
+
mask *= causal_mask
|
391 |
+
mask = torch.div(mask, torch.sum(mask, dim=-1, keepdim=True))
|
392 |
+
return mask
|
393 |
+
|
394 |
+
def forward(self, x, causal=False, attention_mask=None, sequence_mask=None, **kwargs):
|
395 |
+
"""
|
396 |
+
inputs: [batch_size, num_chunk, chunk_length, model_size]
|
397 |
+
"""
|
398 |
+
_, g, n, d = x.size()
|
399 |
+
shortcut, x = x, self.LayerNorm(x)
|
400 |
+
# 通过线性变换得到Z,见论文公式(4)
|
401 |
+
uv = self.dense1(x)
|
402 |
+
# 将uv按最后一维切分,得到Ug:[C*e],Vg:[C*e], Zg:[C*s], 论文中的3.2部分
|
403 |
+
# u:[batch_size, num_chunk, chunk_length, self.e]
|
404 |
+
# v:[batch_size, num_chunk, chunk_length, self.e]
|
405 |
+
# z:[batch_size, num_chunk, chunk_length, self.s]
|
406 |
+
u, v, z = torch.split(self.act_fn(uv), [self.e, self.e, self.s], dim=-1)
|
407 |
+
|
408 |
+
# 生���quad_q, quad_k, lin_q, lin_k
|
409 |
+
# 首先进行简单的offset和scale,融入RoPE位置向量
|
410 |
+
z = torch.einsum("...r, hr->...hr", z, self.gamma) + self.beta
|
411 |
+
z = RoPE(z, dim=[1, 2])
|
412 |
+
quad_q, quad_k, lin_q, lin_k = torch.unbind(z, dim=-2) # 按-2维进行分解得到quad_q, quad_k, lin_q和lin_k
|
413 |
+
# 计算global的lin_v
|
414 |
+
lin_v = self.global_linear_attention(lin_q, lin_k, v, causal)
|
415 |
+
if causal:
|
416 |
+
# 线性注意力部分
|
417 |
+
lin_kv = torch.einsum("bgnk, bgne->bgke", lin_k, lin_v) / torch.tensor(n, x.dtype) # 见公式(7)
|
418 |
+
mask = self.segment_ids_to_mask(segment_ids=segment_ids, causal=causal)
|
419 |
+
cum_lin_kv = torch.einsum('bhke, bgh->bgke', lin_kv, mask)
|
420 |
+
linear = torch.einsum("bgnk, bgke->bgne", lin_kv, cum_lin_kv)
|
421 |
+
# 二次注意力
|
422 |
+
quad_qk = torch.einsum("bgnk, bgmk->bgnm", quad_q, quad_k) # 论文Local attention per chunk部分
|
423 |
+
bias = rel_pos_bias(self.sequence_length, self.s)[:, :n, :n]
|
424 |
+
kernel = torch.square(F.relu(quad_qk / n + bias)) # 论文中的relu**2部分
|
425 |
+
causal_mask = torch.triu(torch.ones([n, n], dtype=x.dtype))
|
426 |
+
quadratic = torch.einsum("bgnm, bgme->bgne", kernel * causal_mask, v)
|
427 |
+
else:
|
428 |
+
lin_kv = torch.einsum("bgnk, bgne->bgke", lin_k, lin_v) / torch.tensor(n, x.dtype) # 见公式(7)
|
429 |
+
mask = self.segment_ids_to_mask(segment_ids=segment_ids, causal=causal)
|
430 |
+
lin_kv = torch.einsum("bhke, bgh->bgke", lin_kv, mask)
|
431 |
+
linear = torch.einsum("bgnk, bgke->bgne", lin_q, lin_kv)
|
432 |
+
# 二次注意力
|
433 |
+
quad_qk = torch.einsum("bgnk, bgmk->bgnm", quad_q, quad_k) # 论文Local attention per chunk部分
|
434 |
+
bias = rel_pos_bias(self.sequence_length, self.s)[:, :n, :n]
|
435 |
+
kernel = torch.square(F.relu(quad_qk / n + bias)) # 论文中的relu**2部分
|
436 |
+
quadratic = torch.einsum("bgnm, bgme->bgne", kernel, v)
|
437 |
+
x = u * (quadratic + linear)
|
438 |
+
x = self.dense2(x)
|
439 |
+
x = x + shortcut
|
440 |
+
return x
|
441 |
+
|
442 |
+
class RelativePositionBias(nn.Module):
|
443 |
+
def __init__(
|
444 |
+
self,
|
445 |
+
scale,
|
446 |
+
causal = False,
|
447 |
+
num_buckets = 32,
|
448 |
+
max_distance = 128
|
449 |
+
):
|
450 |
+
super().__init__()
|
451 |
+
self.scale = scale
|
452 |
+
self.causal = causal
|
453 |
+
self.num_buckets = num_buckets
|
454 |
+
self.max_distance = max_distance
|
455 |
+
self.relative_attention_bias = nn.Embedding(num_buckets, 1)
|
456 |
+
|
457 |
+
@staticmethod
|
458 |
+
def _relative_position_bucket(
|
459 |
+
relative_position,
|
460 |
+
causal = True,
|
461 |
+
num_buckets = 32,
|
462 |
+
max_distance = 128
|
463 |
+
):
|
464 |
+
ret = 0
|
465 |
+
n = -relative_position
|
466 |
+
if not causal:
|
467 |
+
num_buckets //= 2
|
468 |
+
ret += (n < 0).long() * num_buckets
|
469 |
+
n = torch.abs(n)
|
470 |
+
else:
|
471 |
+
n = torch.max(n, torch.zeros_like(n))
|
472 |
+
|
473 |
+
max_exact = num_buckets // 2
|
474 |
+
is_small = n < max_exact
|
475 |
+
|
476 |
+
val_if_large = max_exact + (
|
477 |
+
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
|
478 |
+
).long()
|
479 |
+
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
|
480 |
+
|
481 |
+
ret += torch.where(is_small, n, val_if_large)
|
482 |
+
return ret
|
483 |
+
|
484 |
+
def forward(self, x):
|
485 |
+
i, j, device = *x.shape[-2:], x.device
|
486 |
+
q_pos = torch.arange(i, dtype = torch.long, device = device)
|
487 |
+
k_pos = torch.arange(j, dtype = torch.long, device = device)
|
488 |
+
rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1')
|
489 |
+
rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance)
|
490 |
+
values = self.relative_attention_bias(rp_bucket)
|
491 |
+
bias = rearrange(values, 'i j 1 -> i j')
|
492 |
+
return bias * self.scale
|
493 |
+
|
494 |
+
|
495 |
+
class FlashEmbeddings(nn.Module):
|
496 |
+
"""Construct the embeddings from word, position and token_type embeddings.
|
497 |
+
"""
|
498 |
+
def __init__(self, config, with_position=False):
|
499 |
+
super(FlashEmbeddings, self).__init__()
|
500 |
+
self.word_embeddings = nn.Embedding(
|
501 |
+
config.vocab_size, config.hidden_size)
|
502 |
+
self.token_type_embeddings = nn.Embedding(
|
503 |
+
config.type_vocab_size, config.hidden_size)
|
504 |
+
self.with_position = with_position
|
505 |
+
if with_position:
|
506 |
+
self.position_embeddings = ScaledSinuEmbedding(config.hidden_size)
|
507 |
+
|
508 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
509 |
+
# any TensorFlow checkpoint file
|
510 |
+
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5)
|
511 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
512 |
+
|
513 |
+
def forward(self, input_ids, token_type_ids=None, position_ids=None, token_mask=None):
|
514 |
+
seq_length = input_ids.size(1)
|
515 |
+
if position_ids is None:
|
516 |
+
position_ids = torch.arange(
|
517 |
+
seq_length, dtype=torch.long, device=input_ids.device)
|
518 |
+
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
|
519 |
+
if token_type_ids is None:
|
520 |
+
token_type_ids = torch.zeros_like(input_ids)
|
521 |
+
|
522 |
+
words_embeddings = self.word_embeddings(input_ids)
|
523 |
+
if self.with_position:
|
524 |
+
position_embeddings = self.position_embeddings(words_embeddings)
|
525 |
+
else:
|
526 |
+
position_embeddings = 0
|
527 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
528 |
+
|
529 |
+
# if self.num_pos_emb > 1:
|
530 |
+
# num_batch = position_embeddings.size(0)
|
531 |
+
# num_pos = position_embeddings.size(1)
|
532 |
+
# position_embeddings = position_embeddings.view(
|
533 |
+
# num_batch, num_pos, self.num_pos_emb, -1)[torch.arange(0, num_batch).long(), :, task_idx, :]
|
534 |
+
|
535 |
+
embeddings = words_embeddings + position_embeddings + token_type_embeddings
|
536 |
+
# if self.fp32_embedding:
|
537 |
+
# embeddings = embeddings.half()
|
538 |
+
embeddings = MaskedLayerNorm(self.LayerNorm, embeddings, token_mask)
|
539 |
+
embeddings = self.dropout(embeddings)
|
540 |
+
return {
|
541 |
+
'embeddings': embeddings,
|
542 |
+
'position_embeddings': position_embeddings}
|
543 |
+
|
544 |
+
|
545 |
+
class GAUEncoder(nn.Module):
|
546 |
+
def __init__(self, config, shift_token=False):
|
547 |
+
super().__init__()
|
548 |
+
layer = GAULayer(config, shift_token=shift_token)
|
549 |
+
self.layer = nn.ModuleList([copy.deepcopy(layer)
|
550 |
+
for _ in range(config.num_hidden_layers)])
|
551 |
+
|
552 |
+
def get_attention_mask(self, attention_mask):
|
553 |
+
if attention_mask.dim() <= 2:
|
554 |
+
extended_attention_mask = attention_mask.unsqueeze(1)
|
555 |
+
attention_mask = extended_attention_mask*extended_attention_mask.squeeze(-2).unsqueeze(-1)
|
556 |
+
attention_mask = attention_mask #.byte()
|
557 |
+
return attention_mask
|
558 |
+
|
559 |
+
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True, return_att=False, query_states = None, relative_pos=None):
|
560 |
+
all_encoder_layers = []
|
561 |
+
att_matrices = []
|
562 |
+
if isinstance(hidden_states, Sequence):
|
563 |
+
next_kv = hidden_states[0]
|
564 |
+
else:
|
565 |
+
next_kv = hidden_states
|
566 |
+
# rel_embeddings = self.get_rel_embedding()
|
567 |
+
for i, layer_module in enumerate(self.layer):
|
568 |
+
output_states = layer_module(next_kv, attention_mask, query_states = query_states, relative_pos=relative_pos)
|
569 |
+
if return_att:
|
570 |
+
output_states, att_m = output_states
|
571 |
+
|
572 |
+
# if i == 0 and self.with_conv:
|
573 |
+
# prenorm = output_states #output['prenorm_states']
|
574 |
+
# output_states = self.conv(hidden_states, prenorm, input_mask)
|
575 |
+
|
576 |
+
if query_states is not None:
|
577 |
+
query_states = output_states
|
578 |
+
if isinstance(hidden_states, Sequence):
|
579 |
+
next_kv = hidden_states[i+1] if i+1 < len(self.layer) else None
|
580 |
+
else:
|
581 |
+
next_kv = output_states
|
582 |
+
|
583 |
+
if output_all_encoded_layers:
|
584 |
+
all_encoder_layers.append(output_states)
|
585 |
+
if return_att:
|
586 |
+
att_matrices.append(att_m)
|
587 |
+
if not output_all_encoded_layers:
|
588 |
+
all_encoder_layers.append(output_states)
|
589 |
+
if return_att:
|
590 |
+
att_matrices.append(att_m)
|
591 |
+
return {
|
592 |
+
'hidden_states': all_encoder_layers,
|
593 |
+
'attention_matrices': att_matrices
|
594 |
+
}
|
595 |
+
|
596 |
+
class FlashEncoder(nn.Module):
|
597 |
+
def __init__(self, config):
|
598 |
+
super().__init__(config)
|
599 |
+
layer = GateAttentionUnit(config.max_position_embeddings, config.hidden_size)
|
600 |
+
self.layer = nn.ModuleList([copy.deepcopy(layer)
|
601 |
+
for _ in range(config.num_hidden_layers)])
|
602 |
+
|
603 |
+
def forward(self, hidden_states, attention_mask, token_mask=None,
|
604 |
+
output_all_encoded_layers=True,
|
605 |
+
prev_embedding=None, prev_encoded_layers=None, mask_qkv=None, seg_ids=None):
|
606 |
+
# history embedding and encoded layer must be simultanously given
|
607 |
+
assert (prev_embedding is None) == (prev_encoded_layers is None)
|
608 |
+
|
609 |
+
all_encoder_layers = []
|
610 |
+
if (prev_embedding is not None) and (prev_encoded_layers is not None):
|
611 |
+
history_states = prev_embedding
|
612 |
+
for i, layer_module in enumerate(self.layer):
|
613 |
+
hidden_states = layer_module(
|
614 |
+
hidden_states, attention_mask, history_states=history_states, mask_qkv=mask_qkv, seg_ids=seg_ids)
|
615 |
+
if output_all_encoded_layers:
|
616 |
+
all_encoder_layers.append(hidden_states)
|
617 |
+
if prev_encoded_layers is not None:
|
618 |
+
history_states = prev_encoded_layers[i]
|
619 |
+
else:
|
620 |
+
for layer_module in self.layer:
|
621 |
+
hidden_states = layer_module(
|
622 |
+
hidden_states, attention_mask=attention_mask, mask_qkv=mask_qkv, seg_ids=seg_ids)
|
623 |
+
if output_all_encoded_layers:
|
624 |
+
all_encoder_layers.append(hidden_states)
|
625 |
+
if not output_all_encoded_layers:
|
626 |
+
all_encoder_layers.append(hidden_states)
|
627 |
+
return all_encoder_layers
|
628 |
+
|
629 |
+
# class FlashQuadModel(BertModel):
|
630 |
+
# def __init__(self, config, pooler=False, shift_token=False, causal=False) -> None:
|
631 |
+
# super().__init__(config)
|
632 |
+
# self.embeddings = FlashEmbeddings(config)
|
633 |
+
# self.encoder = GAUEncoder(config, causal=causal, shift_token=shift_token)
|
634 |
+
# if not pooler:
|
635 |
+
# self.pooler = None
|
636 |
+
# self.apply(self.init_bert_weights)
|
637 |
+
|
638 |
+
|
639 |
+
class FlashQuadModel(torch.nn.Module):
|
640 |
+
"""
|
641 |
+
Parameters:
|
642 |
+
config:
|
643 |
+
A model config class instance with the configuration to build a new model. The schema is similar to `BertConfig`,
|
644 |
+
|
645 |
+
pre_trained:
|
646 |
+
The pre-trained DeBERTa model, it can be a physical path of a pre-trained DeBERTa model or a released configurations,
|
647 |
+
i.e. [**base, large, base_mnli, large_mnli**]
|
648 |
+
|
649 |
+
"""
|
650 |
+
|
651 |
+
def __init__(self, config=None, pre_trained=None, pooler=False, shift_token=False, causal=False, **kwargs):
|
652 |
+
super().__init__()
|
653 |
+
state = None
|
654 |
+
if pre_trained is not None:
|
655 |
+
state, model_config = load_model_state(pre_trained)
|
656 |
+
if config is not None and model_config is not None:
|
657 |
+
for k in config.__dict__:
|
658 |
+
if k not in ['hidden_size',
|
659 |
+
'intermediate_size',
|
660 |
+
'num_attention_heads',
|
661 |
+
'num_hidden_layers',
|
662 |
+
'vocab_size',
|
663 |
+
'max_position_embeddings']:
|
664 |
+
model_config.__dict__[k] = config.__dict__[k]
|
665 |
+
config = copy.copy(model_config)
|
666 |
+
self.embeddings = FlashEmbeddings(config, with_position=True)
|
667 |
+
self.encoder = GAUEncoder(config, shift_token=shift_token)
|
668 |
+
if not pooler:
|
669 |
+
self.pooler = None
|
670 |
+
self.config = config
|
671 |
+
self.pre_trained = pre_trained
|
672 |
+
self.apply_state(state)
|
673 |
+
|
674 |
+
def get_attention_mask(self, input_ids=None, token_type_ids=None, attention_mask=None, input_mask=None):
|
675 |
+
if attention_mask is None:
|
676 |
+
if input_mask is not None:
|
677 |
+
return input_mask.unsqueeze(-1).expand(input_mask.size(0), input_mask.size(1), input_mask.size(1))
|
678 |
+
else:
|
679 |
+
return torch.ones_like(input_ids, dtype=torch.uint8).unsqueeze(-1).expand(input_mask.size(0), input_mask.size(1), input_mask.size(1))
|
680 |
+
else:
|
681 |
+
if attention_mask.dim() == 2:
|
682 |
+
if input_mask is not None:
|
683 |
+
attention_mask = attention_mask * input_mask
|
684 |
+
return attention_mask.unsqueeze(-1).expand(input_mask.size(0), input_mask.size(1), attention_mask.size(-1))
|
685 |
+
if attention_mask.dim() == 4:
|
686 |
+
attention_mask = attention_mask.squeeze(2)
|
687 |
+
if attention_mask.dim() == 3:
|
688 |
+
if input_mask is not None:
|
689 |
+
return attention_mask * input_mask.unsqueeze(-1).expand(input_mask.size(0), input_mask.size(1), attention_mask.size(-1))
|
690 |
+
else:
|
691 |
+
return attention_mask
|
692 |
+
|
693 |
+
|
694 |
+
def forward(self, input_ids, input_mask, attention_mask=None, token_type_ids=None,
|
695 |
+
output_all_encoded_layers=True, position_ids=None, return_att=False):
|
696 |
+
"""
|
697 |
+
Args:
|
698 |
+
input_ids:
|
699 |
+
a torch.LongTensor of shape [batch_size, sequence_length] \
|
700 |
+
with the word token indices in the vocabulary
|
701 |
+
|
702 |
+
attention_mask:
|
703 |
+
an optional parameter for input mask or attention mask.
|
704 |
+
|
705 |
+
- If it's an input mask, then it will be torch.LongTensor of shape [batch_size, sequence_length] with indices \
|
706 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max \
|
707 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when \
|
708 |
+
a batch has varying length sentences.
|
709 |
+
|
710 |
+
- If it's an attention mask then it will be torch.LongTensor of shape [batch_size, sequence_length, sequence_length]. \
|
711 |
+
In this case, it's a mask indicate which tokens in the sequence should be attended by other tokens in the sequence.
|
712 |
+
|
713 |
+
token_type_ids:
|
714 |
+
an optional torch.LongTensor of shape [batch_size, sequence_length] with the token \
|
715 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to \
|
716 |
+
a `sentence B` token (see BERT paper for more details).
|
717 |
+
|
718 |
+
output_all_encoded_layers:
|
719 |
+
whether to output results of all encoder layers, default, True
|
720 |
+
|
721 |
+
Returns:
|
722 |
+
|
723 |
+
- The output of the stacked transformer layers if `output_all_encoded_layers=True`, else \
|
724 |
+
the last layer of stacked transformer layers
|
725 |
+
|
726 |
+
- Attention matrix of self-attention layers if `return_att=True`
|
727 |
+
|
728 |
+
|
729 |
+
Example::
|
730 |
+
|
731 |
+
# Batch of wordPiece token ids.
|
732 |
+
# Each sample was padded with zero to the maxium length of the batch
|
733 |
+
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
734 |
+
# Mask of valid input ids
|
735 |
+
attention_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
736 |
+
|
737 |
+
# DeBERTa model initialized with pretrained base model
|
738 |
+
bert = DeBERTa(pre_trained='base')
|
739 |
+
|
740 |
+
encoder_layers = bert(input_ids, attention_mask=attention_mask)
|
741 |
+
|
742 |
+
"""
|
743 |
+
if token_type_ids is None:
|
744 |
+
token_type_ids = torch.zeros_like(input_ids)
|
745 |
+
# input_mask = torch.ones_like(input_ids)
|
746 |
+
|
747 |
+
if input_mask is None:
|
748 |
+
idxs = torch.flip(torch.cumsum(torch.flip(token_type_ids, [-1]), axis=1), [-1])
|
749 |
+
input_mask = idxs > 0
|
750 |
+
if not torch.any(input_mask):
|
751 |
+
input_mask = torch.ones_like(input_ids)
|
752 |
+
input_mask = input_mask # .byte()
|
753 |
+
attention_mask = self.get_attention_mask(input_ids, token_type_ids, attention_mask, input_mask)
|
754 |
+
attention_mask = attention_mask #.byte()
|
755 |
+
embedding_output = self.embeddings(input_ids.to(torch.long), token_type_ids.to(torch.long), position_ids, input_mask)
|
756 |
+
encoder_output = self.encoder(embedding_output['embeddings'], attention_mask, output_all_encoded_layers=output_all_encoded_layers, return_att = return_att)
|
757 |
+
encoder_output.update(embedding_output)
|
758 |
+
return encoder_output
|
759 |
+
|
760 |
+
def apply_state(self, state = None):
|
761 |
+
""" Load state from previous loaded model state dictionary.
|
762 |
+
|
763 |
+
Args:
|
764 |
+
state (:obj:`dict`, optional): State dictionary as the state returned by torch.module.state_dict(), default: `None`. \
|
765 |
+
If it's `None`, then will use the pre-trained state loaded via the constructor to re-initialize \
|
766 |
+
the `DeBERTa` model
|
767 |
+
"""
|
768 |
+
if self.pre_trained is None and state is None:
|
769 |
+
return
|
770 |
+
if state is None:
|
771 |
+
state, config = load_model_state(self.pre_trained)
|
772 |
+
self.config = config
|
773 |
+
|
774 |
+
prefix = ''
|
775 |
+
for k in state:
|
776 |
+
if 'embeddings.' in k:
|
777 |
+
if not k.startswith('embeddings.'):
|
778 |
+
prefix = k[:k.index('embeddings.')]
|
779 |
+
break
|
780 |
+
|
781 |
+
missing_keys = []
|
782 |
+
unexpected_keys = []
|
783 |
+
error_msgs = []
|
784 |
+
self._load_from_state_dict(state, prefix = prefix, local_metadata=None, strict=True, missing_keys=missing_keys, unexpected_keys=unexpected_keys, error_msgs=error_msgs)
|
785 |
+
|
786 |
+
|
787 |
+
class FlashModel(BertModel):
|
788 |
+
def __init__(self, config) -> None:
|
789 |
+
super().__init__(config)
|
790 |
+
self.encoder = FlashEncoder(config)
|
791 |
+
self.apply(self.init_bert_weights)
|
792 |
+
|
793 |
+
if __name__ == '__main__':
|
794 |
+
model = FlashModel(768, 64)
|
modeling/focal_loss.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torch.cuda.amp as amp
|
5 |
+
|
6 |
+
|
7 |
+
##
|
8 |
+
# version 1: use torch.autograd
|
9 |
+
class FocalLossV1(nn.Module):
|
10 |
+
|
11 |
+
def __init__(self,
|
12 |
+
alpha=0.25,
|
13 |
+
gamma=2,
|
14 |
+
reduction='mean',):
|
15 |
+
super(FocalLossV1, self).__init__()
|
16 |
+
self.alpha = alpha
|
17 |
+
self.gamma = gamma
|
18 |
+
self.reduction = reduction
|
19 |
+
self.crit = nn.BCEWithLogitsLoss(reduction='none')
|
20 |
+
|
21 |
+
def forward(self, logits, label):
|
22 |
+
'''
|
23 |
+
Usage is same as nn.BCEWithLogits:
|
24 |
+
>>> criteria = FocalLossV1()
|
25 |
+
>>> logits = torch.randn(8, 19, 384, 384)
|
26 |
+
>>> lbs = torch.randint(0, 2, (8, 19, 384, 384)).float()
|
27 |
+
>>> loss = criteria(logits, lbs)
|
28 |
+
'''
|
29 |
+
probs = torch.sigmoid(logits)
|
30 |
+
coeff = torch.abs(label - probs).pow(self.gamma).neg()
|
31 |
+
log_probs = torch.where(logits >= 0,
|
32 |
+
F.softplus(logits, -1, 50),
|
33 |
+
logits - F.softplus(logits, 1, 50))
|
34 |
+
log_1_probs = torch.where(logits >= 0,
|
35 |
+
-logits + F.softplus(logits, -1, 50),
|
36 |
+
-F.softplus(logits, 1, 50))
|
37 |
+
loss = label * self.alpha * log_probs + (1. - label) * (1. - self.alpha) * log_1_probs
|
38 |
+
loss = loss * coeff
|
39 |
+
|
40 |
+
if self.reduction == 'mean':
|
41 |
+
loss = loss.mean()
|
42 |
+
if self.reduction == 'sum':
|
43 |
+
loss = loss.sum()
|
44 |
+
return loss
|
45 |
+
|
46 |
+
|
47 |
+
##
|
48 |
+
# version 2: user derived grad computation
|
49 |
+
class FocalSigmoidLossFuncV2(torch.autograd.Function):
|
50 |
+
'''
|
51 |
+
compute backward directly for better numeric stability
|
52 |
+
'''
|
53 |
+
@staticmethod
|
54 |
+
@amp.custom_fwd(cast_inputs=torch.float32)
|
55 |
+
def forward(ctx, logits, label, alpha, gamma):
|
56 |
+
# logits = logits.float()
|
57 |
+
|
58 |
+
probs = torch.sigmoid(logits)
|
59 |
+
coeff = (label - probs).abs_().pow_(gamma).neg_()
|
60 |
+
log_probs = torch.where(logits >= 0,
|
61 |
+
F.softplus(logits, -1, 50),
|
62 |
+
logits - F.softplus(logits, 1, 50))
|
63 |
+
log_1_probs = torch.where(logits >= 0,
|
64 |
+
-logits + F.softplus(logits, -1, 50),
|
65 |
+
-F.softplus(logits, 1, 50))
|
66 |
+
ce_term1 = log_probs.mul_(label).mul_(alpha)
|
67 |
+
ce_term2 = log_1_probs.mul_(1. - label).mul_(1. - alpha)
|
68 |
+
ce = ce_term1.add_(ce_term2)
|
69 |
+
loss = ce * coeff
|
70 |
+
|
71 |
+
ctx.vars = (coeff, probs, ce, label, gamma, alpha)
|
72 |
+
|
73 |
+
return loss
|
74 |
+
|
75 |
+
@staticmethod
|
76 |
+
@amp.custom_bwd
|
77 |
+
def backward(ctx, grad_output):
|
78 |
+
'''
|
79 |
+
compute gradient of focal loss
|
80 |
+
'''
|
81 |
+
(coeff, probs, ce, label, gamma, alpha) = ctx.vars
|
82 |
+
|
83 |
+
d_coeff = (label - probs).abs_().pow_(gamma - 1.).mul_(gamma)
|
84 |
+
d_coeff.mul_(probs).mul_(1. - probs)
|
85 |
+
d_coeff = torch.where(label < probs, d_coeff.neg(), d_coeff)
|
86 |
+
term1 = d_coeff.mul_(ce)
|
87 |
+
|
88 |
+
d_ce = label * alpha
|
89 |
+
d_ce.sub_(probs.mul_((label * alpha).mul_(2).add_(1).sub_(label).sub_(alpha)))
|
90 |
+
term2 = d_ce.mul(coeff)
|
91 |
+
|
92 |
+
grads = term1.add_(term2)
|
93 |
+
grads.mul_(grad_output)
|
94 |
+
|
95 |
+
return grads, None, None, None
|
96 |
+
|
97 |
+
|
98 |
+
class FocalLossV2(nn.Module):
|
99 |
+
|
100 |
+
def __init__(self,
|
101 |
+
alpha=0.25,
|
102 |
+
gamma=2,
|
103 |
+
reduction='mean'):
|
104 |
+
super(FocalLossV2, self).__init__()
|
105 |
+
self.alpha = alpha
|
106 |
+
self.gamma = gamma
|
107 |
+
self.reduction = reduction
|
108 |
+
|
109 |
+
def forward(self, logits, label):
|
110 |
+
'''
|
111 |
+
Usage is same as nn.BCEWithLogits:
|
112 |
+
>>> criteria = FocalLossV2()
|
113 |
+
>>> logits = torch.randn(8, 19, 384, 384)
|
114 |
+
>>> lbs = torch.randint(0, 2, (8, 19, 384, 384)).float()
|
115 |
+
>>> loss = criteria(logits, lbs)
|
116 |
+
'''
|
117 |
+
loss = FocalSigmoidLossFuncV2.apply(logits, label, self.alpha, self.gamma)
|
118 |
+
if self.reduction == 'mean':
|
119 |
+
loss = loss.mean()
|
120 |
+
if self.reduction == 'sum':
|
121 |
+
loss = loss.sum()
|
122 |
+
return loss
|
123 |
+
|
124 |
+
|
125 |
+
if __name__ == '__main__':
|
126 |
+
import torchvision
|
127 |
+
import torch
|
128 |
+
import numpy as np
|
129 |
+
import random
|
130 |
+
torch.manual_seed(15)
|
131 |
+
random.seed(15)
|
132 |
+
np.random.seed(15)
|
133 |
+
torch.backends.cudnn.deterministic = True
|
134 |
+
|
135 |
+
class Model(nn.Module):
|
136 |
+
def __init__(self):
|
137 |
+
super(Model, self).__init__()
|
138 |
+
net = torchvision.models.resnet18(pretrained=False)
|
139 |
+
self.conv1 = net.conv1
|
140 |
+
self.bn1 = net.bn1
|
141 |
+
self.maxpool = net.maxpool
|
142 |
+
self.relu = net.relu
|
143 |
+
self.layer1 = net.layer1
|
144 |
+
self.layer2 = net.layer2
|
145 |
+
self.layer3 = net.layer3
|
146 |
+
self.layer4 = net.layer4
|
147 |
+
self.out = nn.Conv2d(512, 3, 3, 1, 1)
|
148 |
+
def forward(self, x):
|
149 |
+
feat = self.conv1(x)
|
150 |
+
feat = self.bn1(feat)
|
151 |
+
feat = self.relu(feat)
|
152 |
+
feat = self.maxpool(feat)
|
153 |
+
feat = self.layer1(feat)
|
154 |
+
feat = self.layer2(feat)
|
155 |
+
feat = self.layer3(feat)
|
156 |
+
feat = self.layer4(feat)
|
157 |
+
feat = self.out(feat)
|
158 |
+
out = F.interpolate(feat, x.size()[2:], mode='bilinear', align_corners=True)
|
159 |
+
return out
|
160 |
+
net1 = Model()
|
161 |
+
net2 = Model()
|
162 |
+
net2.load_state_dict(net1.state_dict())
|
163 |
+
|
164 |
+
criteria1 = FocalLossV2()
|
165 |
+
# criteria2 = FocalLossV3()
|
166 |
+
net1.cuda()
|
167 |
+
net2.cuda()
|
168 |
+
net1.train()
|
169 |
+
net2.train()
|
170 |
+
net1.double()
|
171 |
+
net2.double()
|
172 |
+
criteria1.cuda()
|
173 |
+
# criteria2.cuda()
|
174 |
+
|
175 |
+
optim1 = torch.optim.SGD(net1.parameters(), lr=1e-2)
|
176 |
+
# optim2 = torch.optim.SGD(net2.parameters(), lr=1e-2)
|
177 |
+
|
178 |
+
bs = 16
|
179 |
+
for it in range(300000):
|
180 |
+
inten = torch.randn(bs, 3, 224, 244).cuda()
|
181 |
+
# lbs = torch.randint(0, 2, (bs, 3, 224, 244)).float().cuda()
|
182 |
+
lbs = torch.randn(bs, 3, 224, 244).sigmoid().cuda()
|
183 |
+
inten = inten.double()
|
184 |
+
lbs = lbs.double()
|
185 |
+
logits = net1(inten)
|
186 |
+
loss1 = criteria1(logits, lbs)
|
187 |
+
optim1.zero_grad()
|
188 |
+
loss1.backward()
|
189 |
+
optim1.step()
|
190 |
+
# logits = net2(inten)
|
191 |
+
# loss2 = criteria2(logits, lbs)
|
192 |
+
# optim2.zero_grad()
|
193 |
+
# loss2.backward()
|
194 |
+
# optim2.step()
|
195 |
+
# with torch.no_grad():
|
196 |
+
# if (it+1) % 50 == 0:
|
197 |
+
# print('iter: {}, ================='.format(it+1))
|
198 |
+
# print('out.weight: ', torch.mean(torch.abs(net1.out.weight - net2.out.weight)).item())
|
199 |
+
# print('conv1.weight: ', torch.mean(torch.abs(net1.conv1.weight - net2.conv1.weight)).item())
|
200 |
+
# print('loss: ', loss1.item() - loss2.item())
|
modeling/gat.py
ADDED
@@ -0,0 +1,665 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Zhoubo
|
3 |
+
#
|
4 |
+
"""
|
5 |
+
FLASH: https://arxiv.org/abs/2202.10447
|
6 |
+
"""
|
7 |
+
import copy
|
8 |
+
import torch
|
9 |
+
import math
|
10 |
+
import os
|
11 |
+
from collections import Sequence
|
12 |
+
import json
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
import torch.nn.functional as F
|
17 |
+
from transformers.activations import ACT2FN
|
18 |
+
from .ops import sequence_masking, XSoftmax, StableDropout, MaskedLayerNorm
|
19 |
+
from .config import ModelConfig
|
20 |
+
from .cache_utils import load_model_state
|
21 |
+
import einops
|
22 |
+
|
23 |
+
|
24 |
+
class ScaleNorm(nn.Module):
|
25 |
+
def __init__(self, eps=1e-5):
|
26 |
+
super().__init__()
|
27 |
+
self.eps = eps
|
28 |
+
self.scala = nn.Parameter(torch.ones(1))
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
mean_square = (x ** 2).mean(dim=-1, keepdim=True)
|
32 |
+
x = x * torch.rsqrt(mean_square + self.eps) * self.scala
|
33 |
+
return x
|
34 |
+
|
35 |
+
|
36 |
+
class BertLayerNorm(nn.Module):
|
37 |
+
def __init__(self, hidden_size, eps=1e-5):
|
38 |
+
"""Construct a layernorm module in the TF style (epsilon inside the square root).
|
39 |
+
"""
|
40 |
+
super(BertLayerNorm, self).__init__()
|
41 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
42 |
+
self.bias = nn.Parameter(torch.zeros(hidden_size))
|
43 |
+
self.variance_epsilon = eps
|
44 |
+
|
45 |
+
def forward(self, x):
|
46 |
+
u = x.mean(-1, keepdim=True)
|
47 |
+
s = (x - u).pow(2).mean(-1, keepdim=True)
|
48 |
+
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
|
49 |
+
return self.weight * x + self.bias
|
50 |
+
|
51 |
+
|
52 |
+
class ScaledSinuEmbedding(nn.Module):
|
53 |
+
def __init__(self, dim):
|
54 |
+
super().__init__()
|
55 |
+
self.scale = nn.Parameter(torch.ones(1,))
|
56 |
+
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
57 |
+
self.register_buffer('inv_freq', inv_freq)
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
n, device = x.shape[1], x.device
|
61 |
+
t = torch.arange(n, device = device).type_as(self.inv_freq)
|
62 |
+
sinu = torch.einsum('i , j -> i j', t, self.inv_freq)
|
63 |
+
emb = torch.cat((sinu.sin(), sinu.cos()), dim = -1)
|
64 |
+
return emb * self.scale
|
65 |
+
|
66 |
+
|
67 |
+
def RoPE(x, dim):
|
68 |
+
"""
|
69 |
+
:param x: input tensor
|
70 |
+
:param dim: oprate dimension
|
71 |
+
:return: tensor
|
72 |
+
"""
|
73 |
+
shape = x.shape
|
74 |
+
if isinstance(dim, int):
|
75 |
+
dim = [dim]
|
76 |
+
|
77 |
+
spatial_shape = [shape[i] for i in dim]
|
78 |
+
total_len = 1
|
79 |
+
for i in spatial_shape:
|
80 |
+
total_len *= i
|
81 |
+
position = torch.reshape(torch.arange(total_len, dtype=torch.float, device=x.device), spatial_shape)
|
82 |
+
|
83 |
+
for i in range(dim[-1] + 1, len(shape) - 1, 1):
|
84 |
+
position = torch.unsqueeze(position, dim=-1)
|
85 |
+
|
86 |
+
half_size = shape[-1] // 2
|
87 |
+
freq_seq = -torch.arange(half_size, dtype=torch.float, device=x.device) / float(half_size)
|
88 |
+
inv_freq = 10000 ** -freq_seq
|
89 |
+
sinusoid = torch.einsum("...,d->...d", position, inv_freq)
|
90 |
+
sin = torch.sin(sinusoid)
|
91 |
+
cos = torch.cos(sinusoid)
|
92 |
+
x1, x2 = torch.chunk(x, 2, dim=-1)
|
93 |
+
return torch.cat([x1 * cos - x2 * sin, x2 * cos + x1 * sin], dim=-1)
|
94 |
+
|
95 |
+
|
96 |
+
def rel_pos_bias(seq_len, s):
|
97 |
+
a = torch.rand([1, s], dtype=torch.float)
|
98 |
+
b = torch.rand([1, s], dtype=torch.float)
|
99 |
+
w = torch.rand([2 * seq_len - 1], dtype=torch.float)
|
100 |
+
if seq_len <= 512:
|
101 |
+
t = F.pad(w[: 2 * seq_len - 1], [0, seq_len]).repeat(seq_len)
|
102 |
+
t = t[..., :-seq_len].reshape(-1, seq_len, 3 * seq_len - 2)
|
103 |
+
r = (2 * seq_len - 1) // 2
|
104 |
+
t = t[..., r:-r]
|
105 |
+
else:
|
106 |
+
a = RoPE(a.repeat(seq_len, 1), dim=[0])
|
107 |
+
b = RoPE(b.repeat(seq_len, 1), dim=[0])
|
108 |
+
t = torch.einsum("mk,nk->mn", a, b)
|
109 |
+
return t
|
110 |
+
|
111 |
+
def squared_relu(x, attention_mask, dim=-1):
|
112 |
+
rmask = ~(attention_mask.bool())
|
113 |
+
x = x.masked_fill(rmask, 0)
|
114 |
+
return torch.square(F.relu(x))
|
115 |
+
|
116 |
+
|
117 |
+
def attention_normalize(a, axis=-1, mask=None, fn='softmax'):
|
118 |
+
if fn == 'softmax':
|
119 |
+
return XSoftmax.apply(a, mask, axis)
|
120 |
+
else:
|
121 |
+
mask_ = a > -float('inf') / 10
|
122 |
+
# mask_ = mask_.byte()
|
123 |
+
mask_ = torch.sum(mask_, axis=axis, keepdim=True)
|
124 |
+
l = torch.maximum(mask_, torch.ones_like(mask_))
|
125 |
+
if fn == 'relu':
|
126 |
+
rmask = ~(mask.bool())
|
127 |
+
a = a.masked_fill(rmask, 0)
|
128 |
+
return torch.square(F.relu(a)) / l
|
129 |
+
elif fn == 'softmax_plus':
|
130 |
+
return XSoftmax.apply(a * torch.log(l) / np.log(512), mask, axis)
|
131 |
+
return a
|
132 |
+
|
133 |
+
|
134 |
+
class GAULinear(nn.Linear):
|
135 |
+
def init_weight(self):
|
136 |
+
nn.init.xavier_uniform_(self.weight)
|
137 |
+
|
138 |
+
|
139 |
+
class GatedAttentionUnit(nn.Module):
|
140 |
+
"""
|
141 |
+
GAU Block: Gate Attention Unit
|
142 |
+
"""
|
143 |
+
def __init__(
|
144 |
+
self,
|
145 |
+
max_seq_length,
|
146 |
+
hidden_size,
|
147 |
+
attention_key_size=128,
|
148 |
+
activation='swish',
|
149 |
+
use_bias=True,
|
150 |
+
attention_norm_type='squared_relu',
|
151 |
+
attention_scale=True,
|
152 |
+
dropout=0.1,
|
153 |
+
pre_norm=False,
|
154 |
+
norm_type="layer_norm",
|
155 |
+
eps=1e-5,
|
156 |
+
shift_token=False,
|
157 |
+
use_rel_bias=False,
|
158 |
+
add_residual=True,
|
159 |
+
**kwargs,):
|
160 |
+
|
161 |
+
super(GatedAttentionUnit, self).__init__(**kwargs)
|
162 |
+
self.max_seq_length = max_seq_length
|
163 |
+
self.units = hidden_size
|
164 |
+
self.intermediate_size = self.units * 2
|
165 |
+
self.key_size = attention_key_size
|
166 |
+
self.activation = activation
|
167 |
+
self.use_bias = use_bias
|
168 |
+
self.attention_norm_type = attention_norm_type
|
169 |
+
self.attention_scale = attention_scale
|
170 |
+
self.dropout = StableDropout(dropout)
|
171 |
+
self.i_dense = nn.Sequential(
|
172 |
+
nn.Linear(self.units, 2 * self.intermediate_size + self.key_size, bias=self.use_bias),
|
173 |
+
nn.SiLU()
|
174 |
+
)
|
175 |
+
self.o_dense = nn.Sequential(
|
176 |
+
nn.Linear(self.intermediate_size, self.units, bias=self.use_bias),
|
177 |
+
self.dropout)
|
178 |
+
self.q_scaleoffset = OffsetScale(self.key_size)
|
179 |
+
self.k_scaleoffset = OffsetScale(self.key_size)
|
180 |
+
self.pre_norm = pre_norm
|
181 |
+
self.norm = (nn.LayerNorm(hidden_size, eps=eps) if norm_type.lower() == "layer_norm" else ScaleNorm(eps=eps))
|
182 |
+
self.add_residual = add_residual
|
183 |
+
|
184 |
+
def forward(self, x, attention_mask=None, **kwargs):
|
185 |
+
shortcut = x
|
186 |
+
|
187 |
+
if self.pre_norm:
|
188 |
+
x = self.norm(x)
|
189 |
+
|
190 |
+
x = self.i_dense(x)
|
191 |
+
u, v, qk = torch.split(x, [self.intermediate_size, self.intermediate_size, self.key_size], dim=-1)
|
192 |
+
q, k = self.q_scaleoffset(qk), self.k_scaleoffset(qk)
|
193 |
+
qk = RoPE(torch.stack([q, k], 2), dim=1)
|
194 |
+
q, k = qk[:, :, 0], qk[:, :, 1]
|
195 |
+
a = torch.einsum('bmd,bnd->bmn', q, k)
|
196 |
+
if self.attention_scale:
|
197 |
+
a = a / self.key_size**0.5
|
198 |
+
a = sequence_masking(a, attention_mask, '-inf', -1)
|
199 |
+
A = attention_normalize(a, -1, fn=self.attention_norm_type)
|
200 |
+
if self.dropout:
|
201 |
+
A = self.dropout(A)
|
202 |
+
out = self.o_dense(u * torch.einsum('bmn,bnd->bmd', A, v))
|
203 |
+
|
204 |
+
if self.add_residual:
|
205 |
+
out = out + shortcut
|
206 |
+
if not self.pre_norm:
|
207 |
+
out = self.norm(out)
|
208 |
+
return out
|
209 |
+
|
210 |
+
|
211 |
+
class OffsetScale(nn.Module):
|
212 |
+
def __init__(self, dim, heads = 1):
|
213 |
+
super().__init__()
|
214 |
+
self.gamma = nn.Parameter(torch.ones(heads, dim))
|
215 |
+
self.beta = nn.Parameter(torch.zeros(heads, dim))
|
216 |
+
# nn.init.normal_(self.gamma, std = 0.02)
|
217 |
+
nn.init.xavier_uniform_(self.gamma)
|
218 |
+
|
219 |
+
def forward(self, x):
|
220 |
+
out = torch.einsum('... d, h d -> ... h d', x, self.gamma) + self.beta
|
221 |
+
return out
|
222 |
+
|
223 |
+
|
224 |
+
class BertIntermediate(nn.Module):
|
225 |
+
def __init__(self, config):
|
226 |
+
super().__init__()
|
227 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
228 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act] \
|
229 |
+
if isinstance(config.hidden_act, str) else config.hidden_act
|
230 |
+
|
231 |
+
def forward(self, hidden_states):
|
232 |
+
hidden_states = self.dense(hidden_states)
|
233 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
234 |
+
return hidden_states
|
235 |
+
|
236 |
+
|
237 |
+
class BertOutput(nn.Module):
|
238 |
+
def __init__(self, config):
|
239 |
+
super(BertOutput, self).__init__()
|
240 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
241 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps)
|
242 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
243 |
+
self.config = config
|
244 |
+
|
245 |
+
def forward(self, hidden_states, input_states, mask=None):
|
246 |
+
hidden_states = self.dense(hidden_states)
|
247 |
+
hidden_states = self.dropout(hidden_states)
|
248 |
+
hidden_states += input_states
|
249 |
+
hidden_states = MaskedLayerNorm(self.LayerNorm, hidden_states)
|
250 |
+
return hidden_states
|
251 |
+
|
252 |
+
|
253 |
+
class GAU(nn.Module):
|
254 |
+
def __init__(self, max_seq_length, hidden_size, expansion_factor=2, s=128, norm_type="layer_norm", eps=1e-5,
|
255 |
+
hidden_act="silu", shift_token=False, use_rel_bias=False, attention_norm_type='softmax',
|
256 |
+
pre_norm=False, dropout=0, add_residual = True):
|
257 |
+
super(GAU, self).__init__()
|
258 |
+
self.max_seq_length = max_seq_length
|
259 |
+
self.shift_token = shift_token
|
260 |
+
hidden_dim = int(expansion_factor * hidden_size)
|
261 |
+
self.norm = (nn.LayerNorm(hidden_size, eps=eps) if norm_type == "layer_norm" else ScaleNorm(eps=eps))
|
262 |
+
self.use_rel_bias = use_rel_bias
|
263 |
+
self.attention_norm_type = attention_norm_type
|
264 |
+
# if attention_norm_type == 'relu':
|
265 |
+
# self.attention_norm_func = squared_relu
|
266 |
+
# else:
|
267 |
+
# self.attention_norm_func = XSoftmax.apply
|
268 |
+
# self.norm = norm_klass(hidden_size)
|
269 |
+
|
270 |
+
self.dropout = nn.Dropout(dropout)
|
271 |
+
|
272 |
+
self.to_hidden = nn.Sequential(
|
273 |
+
nn.Linear(hidden_size, hidden_dim * 2),
|
274 |
+
nn.SiLU()
|
275 |
+
)
|
276 |
+
|
277 |
+
self.to_qk = nn.Sequential(
|
278 |
+
nn.Linear(hidden_size, s),
|
279 |
+
nn.SiLU()
|
280 |
+
)
|
281 |
+
|
282 |
+
self.offsetscale = OffsetScale(s, heads = 2)
|
283 |
+
|
284 |
+
self.to_out = nn.Sequential(
|
285 |
+
nn.Linear(hidden_dim, hidden_size),
|
286 |
+
nn.Dropout(dropout)
|
287 |
+
)
|
288 |
+
|
289 |
+
self.add_residual = add_residual
|
290 |
+
self.act_fn = ACT2FN[hidden_act]
|
291 |
+
self.pre_norm = pre_norm
|
292 |
+
|
293 |
+
|
294 |
+
def forward(
|
295 |
+
self,
|
296 |
+
x,
|
297 |
+
relative_pos = None,
|
298 |
+
attention_mask = None
|
299 |
+
):
|
300 |
+
seq_len, device = x.shape[-2], x.device
|
301 |
+
if self.pre_norm:
|
302 |
+
normed_x = self.norm(x)
|
303 |
+
else:
|
304 |
+
normed_x = x
|
305 |
+
v, gate = self.to_hidden(normed_x).chunk(2, dim = -1)
|
306 |
+
|
307 |
+
qk = self.to_qk(normed_x)
|
308 |
+
base = self.offsetscale(qk)
|
309 |
+
base = RoPE(base, 1).half()
|
310 |
+
q, k = base.unbind(dim = -2)
|
311 |
+
sim = torch.einsum('b i d, b j d -> b i j', q, k)
|
312 |
+
|
313 |
+
if relative_pos is not None:
|
314 |
+
sim = sim + relative_pos
|
315 |
+
if attention_mask is not None:
|
316 |
+
if attention_mask.dim() < 3:
|
317 |
+
attention_mask = einops.rearrange(attention_mask, 'b j -> b 1 j')
|
318 |
+
# attn = attn.masked_fill(~attention_mask.bool(), 0.)
|
319 |
+
attn = attention_normalize(sim, mask=attention_mask, fn=self.attention_norm_type)
|
320 |
+
# attn = F.relu(sim) ** 2 / seq_len# / q.size(-1)
|
321 |
+
# logger.info(attn.max())
|
322 |
+
attn = self.dropout(attn)
|
323 |
+
# if self.causal:
|
324 |
+
# causal_mask = torch.ones((seq_len, seq_len), dtype = torch.bool, device = device).triu(1)
|
325 |
+
# attn = attn.masked_fill(causal_mask, 0.)
|
326 |
+
|
327 |
+
out = torch.einsum('b i j, b j d -> b i d', attn.half(), v)
|
328 |
+
out = out * gate
|
329 |
+
|
330 |
+
out = self.to_out(out)
|
331 |
+
|
332 |
+
if self.add_residual:
|
333 |
+
out = out + x
|
334 |
+
if not self.pre_norm:
|
335 |
+
out = self.norm(out)
|
336 |
+
return out
|
337 |
+
|
338 |
+
|
339 |
+
class GatLayer(nn.Module):
|
340 |
+
def __init__(self, config, shift_token=False, use_ffn=False):
|
341 |
+
super(GatLayer, self).__init__()
|
342 |
+
self.attention = GatedAttentionUnit(config.max_position_embeddings, config.hidden_size,
|
343 |
+
shift_token=shift_token, use_rel_bias=config.use_rel_bias,
|
344 |
+
norm_type=config.norm_type, attention_norm_type=config.attention_norm_type,
|
345 |
+
pre_norm=config.pre_norm, dropout=config.hidden_dropout_prob)
|
346 |
+
if use_ffn:
|
347 |
+
self.intermediate = BertIntermediate(config)
|
348 |
+
self.output = BertOutput(config)
|
349 |
+
self.use_ffn = use_ffn
|
350 |
+
|
351 |
+
def forward(self, hidden_states, attention_mask, return_att=False, query_states=None, relative_pos=None, rel_embeddings=None):
|
352 |
+
attention_output = self.attention(hidden_states, attention_mask=attention_mask, relative_pos=relative_pos)
|
353 |
+
if self.use_ffn:
|
354 |
+
intermediate_output = self.intermediate(attention_output)
|
355 |
+
layer_output = self.output(intermediate_output, attention_output)
|
356 |
+
return layer_output
|
357 |
+
else:
|
358 |
+
return attention_output
|
359 |
+
|
360 |
+
|
361 |
+
class RelativePositionBias(nn.Module):
|
362 |
+
def __init__(
|
363 |
+
self,
|
364 |
+
scale,
|
365 |
+
causal = False,
|
366 |
+
num_buckets = 32,
|
367 |
+
max_distance = 128
|
368 |
+
):
|
369 |
+
super().__init__()
|
370 |
+
self.scale = scale
|
371 |
+
self.causal = causal
|
372 |
+
self.num_buckets = num_buckets
|
373 |
+
self.max_distance = max_distance
|
374 |
+
self.relative_attention_bias = nn.Embedding(num_buckets, 1)
|
375 |
+
|
376 |
+
@staticmethod
|
377 |
+
def _relative_position_bucket(
|
378 |
+
relative_position,
|
379 |
+
causal = True,
|
380 |
+
num_buckets = 32,
|
381 |
+
max_distance = 128
|
382 |
+
):
|
383 |
+
ret = 0
|
384 |
+
n = -relative_position
|
385 |
+
if not causal:
|
386 |
+
num_buckets //= 2
|
387 |
+
ret += (n < 0).long() * num_buckets
|
388 |
+
n = torch.abs(n)
|
389 |
+
else:
|
390 |
+
n = torch.max(n, torch.zeros_like(n))
|
391 |
+
|
392 |
+
max_exact = num_buckets // 2
|
393 |
+
is_small = n < max_exact
|
394 |
+
|
395 |
+
val_if_large = max_exact + (
|
396 |
+
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
|
397 |
+
).long()
|
398 |
+
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
|
399 |
+
|
400 |
+
ret += torch.where(is_small, n, val_if_large)
|
401 |
+
return ret
|
402 |
+
|
403 |
+
def forward(self, x):
|
404 |
+
i, j, device = *x.shape[-2:], x.device
|
405 |
+
q_pos = torch.arange(i, dtype = torch.long, device = device)
|
406 |
+
k_pos = torch.arange(j, dtype = torch.long, device = device)
|
407 |
+
rel_pos = einops.rearrange(k_pos, 'j -> 1 j') - einops.rearrange(q_pos, 'i -> i 1')
|
408 |
+
rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance)
|
409 |
+
values = self.relative_attention_bias(rp_bucket)
|
410 |
+
bias = einops.rearrange(values, 'i j 1 -> i j')
|
411 |
+
return bias * self.scale
|
412 |
+
|
413 |
+
|
414 |
+
class GatEmbeddings(nn.Module):
|
415 |
+
"""Construct the embeddings from word, position and token_type embeddings.
|
416 |
+
"""
|
417 |
+
def __init__(self, config, with_position=False):
|
418 |
+
super(GatEmbeddings, self).__init__()
|
419 |
+
self.word_embeddings = nn.Embedding(
|
420 |
+
config.vocab_size, config.hidden_size)
|
421 |
+
self.token_type_embeddings = nn.Embedding(
|
422 |
+
config.type_vocab_size, config.hidden_size)
|
423 |
+
self.with_position = with_position
|
424 |
+
if with_position:
|
425 |
+
self.position_embeddings = ScaledSinuEmbedding(config.hidden_size)
|
426 |
+
|
427 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
428 |
+
# any TensorFlow checkpoint file
|
429 |
+
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5)
|
430 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
431 |
+
|
432 |
+
def forward(self, input_ids, token_type_ids=None, position_ids=None, token_mask=None):
|
433 |
+
seq_length = input_ids.size(1)
|
434 |
+
if position_ids is None:
|
435 |
+
position_ids = torch.arange(
|
436 |
+
seq_length, dtype=torch.long, device=input_ids.device)
|
437 |
+
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
|
438 |
+
if token_type_ids is None:
|
439 |
+
token_type_ids = torch.zeros_like(input_ids)
|
440 |
+
|
441 |
+
words_embeddings = self.word_embeddings(input_ids)
|
442 |
+
if self.with_position:
|
443 |
+
position_embeddings = self.position_embeddings(words_embeddings)
|
444 |
+
else:
|
445 |
+
position_embeddings = 0
|
446 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
447 |
+
|
448 |
+
# if self.num_pos_emb > 1:
|
449 |
+
# num_batch = position_embeddings.size(0)
|
450 |
+
# num_pos = position_embeddings.size(1)
|
451 |
+
# position_embeddings = position_embeddings.view(
|
452 |
+
# num_batch, num_pos, self.num_pos_emb, -1)[torch.arange(0, num_batch).long(), :, task_idx, :]
|
453 |
+
|
454 |
+
embeddings = words_embeddings + position_embeddings + token_type_embeddings
|
455 |
+
# if self.fp32_embedding:
|
456 |
+
# embeddings = embeddings.half()
|
457 |
+
embeddings = MaskedLayerNorm(self.LayerNorm, embeddings, token_mask)
|
458 |
+
embeddings = self.dropout(embeddings)
|
459 |
+
return {
|
460 |
+
'embeddings': embeddings,
|
461 |
+
'position_embeddings': position_embeddings}
|
462 |
+
|
463 |
+
|
464 |
+
class GatEncoder(nn.Module):
|
465 |
+
def __init__(self, config, shift_token=False):
|
466 |
+
super().__init__()
|
467 |
+
layer = GatLayer(config, shift_token=shift_token)
|
468 |
+
self.layer = nn.ModuleList([copy.deepcopy(layer)
|
469 |
+
for _ in range(config.num_hidden_layers)])
|
470 |
+
|
471 |
+
def get_attention_mask(self, attention_mask):
|
472 |
+
if attention_mask.dim() <= 2:
|
473 |
+
extended_attention_mask = attention_mask.unsqueeze(1)
|
474 |
+
attention_mask = extended_attention_mask*extended_attention_mask.squeeze(-2).unsqueeze(-1)
|
475 |
+
attention_mask = attention_mask.byte()
|
476 |
+
return attention_mask
|
477 |
+
|
478 |
+
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True, return_att=False, query_states = None, relative_pos=None):
|
479 |
+
all_encoder_layers = []
|
480 |
+
att_matrices = []
|
481 |
+
if isinstance(hidden_states, Sequence):
|
482 |
+
next_kv = hidden_states[0]
|
483 |
+
else:
|
484 |
+
next_kv = hidden_states
|
485 |
+
# rel_embeddings = self.get_rel_embedding()
|
486 |
+
for i, layer_module in enumerate(self.layer):
|
487 |
+
output_states = layer_module(next_kv, attention_mask, query_states = query_states, relative_pos=relative_pos)
|
488 |
+
if return_att:
|
489 |
+
output_states, att_m = output_states
|
490 |
+
|
491 |
+
# if i == 0 and self.with_conv:
|
492 |
+
# prenorm = output_states #output['prenorm_states']
|
493 |
+
# output_states = self.conv(hidden_states, prenorm, input_mask)
|
494 |
+
|
495 |
+
if query_states is not None:
|
496 |
+
query_states = output_states
|
497 |
+
if isinstance(hidden_states, Sequence):
|
498 |
+
next_kv = hidden_states[i+1] if i+1 < len(self.layer) else None
|
499 |
+
else:
|
500 |
+
next_kv = output_states
|
501 |
+
|
502 |
+
if output_all_encoded_layers:
|
503 |
+
all_encoder_layers.append(output_states)
|
504 |
+
if return_att:
|
505 |
+
att_matrices.append(att_m)
|
506 |
+
if not output_all_encoded_layers:
|
507 |
+
all_encoder_layers.append(output_states)
|
508 |
+
if return_att:
|
509 |
+
att_matrices.append(att_m)
|
510 |
+
return {
|
511 |
+
'hidden_states': all_encoder_layers,
|
512 |
+
'attention_matrices': att_matrices
|
513 |
+
}
|
514 |
+
|
515 |
+
|
516 |
+
class GatModel(torch.nn.Module):
|
517 |
+
"""
|
518 |
+
Parameters:
|
519 |
+
config:
|
520 |
+
A model config class instance with the configuration to build a new model. The schema is similar to `BertConfig`,
|
521 |
+
|
522 |
+
pre_trained:
|
523 |
+
The pre-trained DeBERTa model, it can be a physical path of a pre-trained DeBERTa model or a released configurations,
|
524 |
+
i.e. [**base, large, base_mnli, large_mnli**]
|
525 |
+
|
526 |
+
"""
|
527 |
+
|
528 |
+
def __init__(self, config=None, pre_trained=None, pooler=False, shift_token=False, causal=False, **kwargs):
|
529 |
+
super().__init__()
|
530 |
+
state = None
|
531 |
+
if pre_trained is not None:
|
532 |
+
state, model_config = load_model_state(pre_trained)
|
533 |
+
if config is not None and model_config is not None:
|
534 |
+
for k in config.__dict__:
|
535 |
+
if k not in ['hidden_size',
|
536 |
+
'intermediate_size',
|
537 |
+
'num_attention_heads',
|
538 |
+
'num_hidden_layers',
|
539 |
+
'vocab_size',
|
540 |
+
'max_position_embeddings']:
|
541 |
+
model_config.__dict__[k] = config.__dict__[k]
|
542 |
+
config = copy.copy(model_config)
|
543 |
+
self.embeddings = GatEmbeddings(config, with_position=True)
|
544 |
+
self.encoder = GatEncoder(config, shift_token=shift_token)
|
545 |
+
if not pooler:
|
546 |
+
self.pooler = None
|
547 |
+
self.config = config
|
548 |
+
self.pre_trained = pre_trained
|
549 |
+
self.apply_state(state)
|
550 |
+
|
551 |
+
def get_attention_mask(self, input_ids=None, token_type_ids=None, attention_mask=None, input_mask=None):
|
552 |
+
if attention_mask is None:
|
553 |
+
if input_mask is not None:
|
554 |
+
return input_mask.unsqueeze(-1).expand(input_mask.size(0), input_mask.size(1), input_mask.size(1))
|
555 |
+
else:
|
556 |
+
return torch.ones_like(input_ids, dtype=torch.uint8).unsqueeze(-1).expand(input_mask.size(0), input_mask.size(1), input_mask.size(1))
|
557 |
+
else:
|
558 |
+
if attention_mask.dim() == 2:
|
559 |
+
if input_mask is not None:
|
560 |
+
attention_mask = attention_mask * input_mask
|
561 |
+
return attention_mask.unsqueeze(-1).expand(input_mask.size(0), input_mask.size(1), attention_mask.size(-1))
|
562 |
+
if attention_mask.dim() == 4:
|
563 |
+
attention_mask = attention_mask.squeeze(2)
|
564 |
+
if attention_mask.dim() == 3:
|
565 |
+
if input_mask is not None:
|
566 |
+
return attention_mask * input_mask.unsqueeze(-1).expand(input_mask.size(0), input_mask.size(1), attention_mask.size(-1))
|
567 |
+
else:
|
568 |
+
return attention_mask
|
569 |
+
|
570 |
+
|
571 |
+
def forward(self, input_ids, input_mask, attention_mask=None, token_type_ids=None,
|
572 |
+
output_all_encoded_layers=True, position_ids=None, return_att=False):
|
573 |
+
"""
|
574 |
+
Args:
|
575 |
+
input_ids:
|
576 |
+
a torch.LongTensor of shape [batch_size, sequence_length] \
|
577 |
+
with the word token indices in the vocabulary
|
578 |
+
|
579 |
+
attention_mask:
|
580 |
+
an optional parameter for input mask or attention mask.
|
581 |
+
|
582 |
+
- If it's an input mask, then it will be torch.LongTensor of shape [batch_size, sequence_length] with indices \
|
583 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max \
|
584 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when \
|
585 |
+
a batch has varying length sentences.
|
586 |
+
|
587 |
+
- If it's an attention mask then it will be torch.LongTensor of shape [batch_size, sequence_length, sequence_length]. \
|
588 |
+
In this case, it's a mask indicate which tokens in the sequence should be attended by other tokens in the sequence.
|
589 |
+
|
590 |
+
token_type_ids:
|
591 |
+
an optional torch.LongTensor of shape [batch_size, sequence_length] with the token \
|
592 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to \
|
593 |
+
a `sentence B` token (see BERT paper for more details).
|
594 |
+
|
595 |
+
output_all_encoded_layers:
|
596 |
+
whether to output results of all encoder layers, default, True
|
597 |
+
|
598 |
+
Returns:
|
599 |
+
|
600 |
+
- The output of the stacked transformer layers if `output_all_encoded_layers=True`, else \
|
601 |
+
the last layer of stacked transformer layers
|
602 |
+
|
603 |
+
- Attention matrix of self-attention layers if `return_att=True`
|
604 |
+
|
605 |
+
|
606 |
+
Example::
|
607 |
+
|
608 |
+
# Batch of wordPiece token ids.
|
609 |
+
# Each sample was padded with zero to the maxium length of the batch
|
610 |
+
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
611 |
+
# Mask of valid input ids
|
612 |
+
attention_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
613 |
+
|
614 |
+
# DeBERTa model initialized with pretrained base model
|
615 |
+
bert = DeBERTa(pre_trained='base')
|
616 |
+
|
617 |
+
encoder_layers = bert(input_ids, attention_mask=attention_mask)
|
618 |
+
|
619 |
+
"""
|
620 |
+
if token_type_ids is None:
|
621 |
+
token_type_ids = torch.zeros_like(input_ids)
|
622 |
+
# input_mask = torch.ones_like(input_ids)
|
623 |
+
|
624 |
+
if input_mask is None:
|
625 |
+
idxs = torch.flip(torch.cumsum(torch.flip(token_type_ids, [-1]), axis=1), [-1])
|
626 |
+
input_mask = idxs > 0
|
627 |
+
if not torch.any(input_mask):
|
628 |
+
input_mask = torch.ones_like(input_ids)
|
629 |
+
input_mask = input_mask.byte()
|
630 |
+
attention_mask = self.get_attention_mask(input_ids, token_type_ids, attention_mask, input_mask)
|
631 |
+
attention_mask = attention_mask.byte()
|
632 |
+
embedding_output = self.embeddings(input_ids.to(torch.long), token_type_ids.to(torch.long), position_ids, input_mask)
|
633 |
+
encoder_output = self.encoder(embedding_output['embeddings'], attention_mask, output_all_encoded_layers=output_all_encoded_layers, return_att = return_att)
|
634 |
+
encoder_output.update(embedding_output)
|
635 |
+
return encoder_output
|
636 |
+
|
637 |
+
def apply_state(self, state = None):
|
638 |
+
""" Load state from previous loaded model state dictionary.
|
639 |
+
|
640 |
+
Args:
|
641 |
+
state (:obj:`dict`, optional): State dictionary as the state returned by torch.module.state_dict(), default: `None`. \
|
642 |
+
If it's `None`, then will use the pre-trained state loaded via the constructor to re-initialize \
|
643 |
+
the `DeBERTa` model
|
644 |
+
"""
|
645 |
+
if self.pre_trained is None and state is None:
|
646 |
+
return
|
647 |
+
if state is None:
|
648 |
+
state, config = load_model_state(self.pre_trained)
|
649 |
+
self.config = config
|
650 |
+
|
651 |
+
prefix = ''
|
652 |
+
for k in state:
|
653 |
+
if 'embeddings.' in k:
|
654 |
+
if not k.startswith('embeddings.'):
|
655 |
+
prefix = k[:k.index('embeddings.')]
|
656 |
+
break
|
657 |
+
|
658 |
+
missing_keys = []
|
659 |
+
unexpected_keys = []
|
660 |
+
error_msgs = []
|
661 |
+
self._load_from_state_dict(state, prefix = prefix, local_metadata=None, strict=True, missing_keys=missing_keys, unexpected_keys=unexpected_keys, error_msgs=error_msgs)
|
662 |
+
|
663 |
+
|
664 |
+
if __name__ == '__main__':
|
665 |
+
model = GatModel(768, 64)
|
modeling/gpt2_bpe_utils.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Byte pair encoding utilities from GPT-2.
|
3 |
+
|
4 |
+
Original source: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
5 |
+
Original license: MIT
|
6 |
+
"""
|
7 |
+
|
8 |
+
from functools import lru_cache
|
9 |
+
import json
|
10 |
+
import random
|
11 |
+
import unicodedata
|
12 |
+
|
13 |
+
try:
|
14 |
+
import regex as re
|
15 |
+
except ImportError:
|
16 |
+
raise ImportError('Please install regex with: pip install regex')
|
17 |
+
|
18 |
+
@lru_cache()
|
19 |
+
def bytes_to_unicode():
|
20 |
+
"""
|
21 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
22 |
+
The reversible bpe codes work on unicode strings.
|
23 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
24 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
25 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
26 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
27 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
28 |
+
"""
|
29 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
30 |
+
cs = bs[:]
|
31 |
+
n = 0
|
32 |
+
for b in range(2**8):
|
33 |
+
if b not in bs:
|
34 |
+
bs.append(b)
|
35 |
+
cs.append(2**8+n)
|
36 |
+
n += 1
|
37 |
+
cs = [chr(n) for n in cs]
|
38 |
+
return dict(zip(bs, cs))
|
39 |
+
|
40 |
+
def get_pairs(word):
|
41 |
+
"""Return set of symbol pairs in a word.
|
42 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
43 |
+
"""
|
44 |
+
pairs = set()
|
45 |
+
prev_char = word[0]
|
46 |
+
for char in word[1:]:
|
47 |
+
pairs.add((prev_char, char))
|
48 |
+
prev_char = char
|
49 |
+
return pairs
|
50 |
+
|
51 |
+
class Encoder:
|
52 |
+
|
53 |
+
def __init__(self, encoder, bpe_merges, errors='replace'):
|
54 |
+
self.encoder = encoder
|
55 |
+
self.decoder = {v:k for k,v in self.encoder.items()}
|
56 |
+
self.errors = errors # how to handle errors in decoding
|
57 |
+
self.byte_encoder = bytes_to_unicode()
|
58 |
+
self.byte_decoder = {v:k for k, v in self.byte_encoder.items()}
|
59 |
+
self.bpe_ranks = dict(zip([tuple(k) for k in bpe_merges], range(len(bpe_merges))))
|
60 |
+
self.cache = {}
|
61 |
+
self.random = random.Random(0)
|
62 |
+
|
63 |
+
# Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
64 |
+
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
65 |
+
|
66 |
+
def bpe(self, token):
|
67 |
+
if token in self.cache:
|
68 |
+
return self.cache[token]
|
69 |
+
word = tuple(token)
|
70 |
+
pairs = get_pairs(word)
|
71 |
+
|
72 |
+
if not pairs:
|
73 |
+
return token
|
74 |
+
|
75 |
+
while True:
|
76 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
77 |
+
if bigram not in self.bpe_ranks:
|
78 |
+
break
|
79 |
+
first, second = bigram
|
80 |
+
new_word = []
|
81 |
+
i = 0
|
82 |
+
while i < len(word):
|
83 |
+
try:
|
84 |
+
j = word.index(first, i)
|
85 |
+
new_word.extend(word[i:j])
|
86 |
+
i = j
|
87 |
+
except:
|
88 |
+
new_word.extend(word[i:])
|
89 |
+
break
|
90 |
+
|
91 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
92 |
+
new_word.append(first+second)
|
93 |
+
i += 2
|
94 |
+
else:
|
95 |
+
new_word.append(word[i])
|
96 |
+
i += 1
|
97 |
+
new_word = tuple(new_word)
|
98 |
+
word = new_word
|
99 |
+
if len(word) == 1:
|
100 |
+
break
|
101 |
+
else:
|
102 |
+
pairs = get_pairs(word)
|
103 |
+
word = ' '.join(word)
|
104 |
+
self.cache[token] = word
|
105 |
+
return word
|
106 |
+
|
107 |
+
def split_to_words(self, text):
|
108 |
+
return list(re.findall(self.pat, text))
|
109 |
+
|
110 |
+
def encode(self, text):
|
111 |
+
bpe_tokens = []
|
112 |
+
for token in self.split_to_words(text):
|
113 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
114 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
115 |
+
return bpe_tokens
|
116 |
+
|
117 |
+
def decode(self, tokens):
|
118 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
119 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
|
120 |
+
return text
|
121 |
+
|
122 |
+
def get_encoder(encoder, vocab):
|
123 |
+
return Encoder(
|
124 |
+
encoder=encoder,
|
125 |
+
bpe_merges=vocab,
|
126 |
+
)
|
127 |
+
|
128 |
+
def _is_whitespace(char):
|
129 |
+
"""Checks whether `chars` is a whitespace character."""
|
130 |
+
# \t, \n, and \r are technically contorl characters but we treat them
|
131 |
+
# as whitespace since they are generally considered as such.
|
132 |
+
if char == " " or char == "\t" or char == "\n" or char == "\r":
|
133 |
+
return True
|
134 |
+
cat = unicodedata.category(char)
|
135 |
+
if cat == "Zs":
|
136 |
+
return True
|
137 |
+
return False
|
138 |
+
|
139 |
+
def _is_control(char):
|
140 |
+
"""Checks whether `chars` is a control character."""
|
141 |
+
# These are technically control characters but we count them as whitespace
|
142 |
+
# characters.
|
143 |
+
if char == "\t" or char == "\n" or char == "\r":
|
144 |
+
return False
|
145 |
+
cat = unicodedata.category(char)
|
146 |
+
if cat.startswith("C"):
|
147 |
+
return True
|
148 |
+
return False
|
149 |
+
|
150 |
+
def _is_punctuation(char):
|
151 |
+
"""Checks whether `chars` is a punctuation character."""
|
152 |
+
cp = ord(char)
|
153 |
+
# We treat all non-letter/number ASCII as punctuation.
|
154 |
+
# Characters such as "^", "$", and "`" are not in the Unicode
|
155 |
+
# Punctuation class but we treat them as punctuation anyways, for
|
156 |
+
# consistency.
|
157 |
+
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
|
158 |
+
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
|
159 |
+
return True
|
160 |
+
cat = unicodedata.category(char)
|
161 |
+
if cat.startswith("P"):
|
162 |
+
return True
|
163 |
+
return False
|
modeling/gpt2_tokenizer.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Copyright (c) Microsoft, Inc. 2020
|
3 |
+
#
|
4 |
+
# This source code is licensed under the MIT license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
#
|
7 |
+
# Zhou Bo
|
8 |
+
# Date: 01/15/2020
|
9 |
+
#
|
10 |
+
|
11 |
+
# This piece of code is derived from https://github.com/pytorch/fairseq/blob/master/fairseq/data/encoders/gpt2_bpe.py
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import unicodedata
|
15 |
+
import os
|
16 |
+
from .gpt2_bpe_utils import get_encoder,_is_control,_is_whitespace,_is_punctuation
|
17 |
+
from .cache_utils import load_vocab
|
18 |
+
|
19 |
+
__all__ = ['GPT2Tokenizer']
|
20 |
+
|
21 |
+
class GPT2Tokenizer(object):
|
22 |
+
""" A wrapper of GPT2 tokenizer with similar interface as BERT tokenizer
|
23 |
+
|
24 |
+
Args:
|
25 |
+
|
26 |
+
vocab_file (:obj:`str`, optional):
|
27 |
+
The local path of vocabulary package or the release name of vocabulary in `DeBERTa GitHub releases <https://github.com/microsoft/DeBERTa/releases>`_, \
|
28 |
+
e.g. "bpe_encoder", default: `None`.
|
29 |
+
|
30 |
+
If it's `None`, then it will download the vocabulary in the latest release from GitHub. The vocabulary file is a \
|
31 |
+
state dictionary with three items, "dict_map", "vocab", "encoder" which correspond to three files used in `RoBERTa`, i.e. `dict.txt`, `vocab.txt` and `encoder.json`. \
|
32 |
+
|
33 |
+
The difference between our wrapped GPT2 tokenizer and RoBERTa wrapped tokenizer are,
|
34 |
+
|
35 |
+
- Special tokens, unlike `RoBERTa` which use `<s>`, `</s>` as the `start` token and `end` token of a sentence. We use `[CLS]` and `[SEP]` as the `start` and `end`\
|
36 |
+
token of input sentence which is the same as `BERT`.
|
37 |
+
|
38 |
+
- We remapped the token ids in our dictionary with regarding to the new special tokens, `[PAD]` => 0, `[CLS]` => 1, `[SEP]` => 2, `[UNK]` => 3, `[MASK]` => 50264
|
39 |
+
|
40 |
+
do_lower_case (:obj:`bool`, optional):
|
41 |
+
Whether to convert inputs to lower case. **Not used in GPT2 tokenizer**.
|
42 |
+
|
43 |
+
special_tokens (:obj:`list`, optional):
|
44 |
+
List of special tokens to be added to the end of the vocabulary.
|
45 |
+
|
46 |
+
|
47 |
+
"""
|
48 |
+
def __init__(self, vocab_file=None, do_lower_case=True, special_tokens=None):
|
49 |
+
self.pad_token='[PAD]'
|
50 |
+
self.sep_token='[SEP]'
|
51 |
+
self.unk_token='[UNK]'
|
52 |
+
self.cls_token='[CLS]'
|
53 |
+
|
54 |
+
self.symbols = []
|
55 |
+
self.count = []
|
56 |
+
self.indices = {}
|
57 |
+
self.pad_token_id = self.add_symbol(self.pad_token)
|
58 |
+
self.cls_token_id = self.add_symbol(self.cls_token)
|
59 |
+
self.sep_token_id = self.add_symbol(self.sep_token)
|
60 |
+
self.unk_token_id = self.add_symbol(self.unk_token)
|
61 |
+
|
62 |
+
self.gpt2_encoder = torch.load(vocab_file)
|
63 |
+
self.bpe = get_encoder(self.gpt2_encoder['encoder'], self.gpt2_encoder['vocab'])
|
64 |
+
for w,n in self.gpt2_encoder['dict_map']:
|
65 |
+
self.add_symbol(w, n)
|
66 |
+
|
67 |
+
self.mask_token='[MASK]'
|
68 |
+
self.mask_id = self.add_symbol(self.mask_token)
|
69 |
+
self.special_tokens = ['[MASK]', '[SEP]', '[PAD]', '[UNK]', '[CLS]']
|
70 |
+
if special_tokens is not None:
|
71 |
+
for t in special_tokens:
|
72 |
+
self.add_special_token(t)
|
73 |
+
|
74 |
+
self.vocab = self.indices
|
75 |
+
self.ids_to_tokens = self.symbols
|
76 |
+
|
77 |
+
def tokenize(self, text):
|
78 |
+
""" Convert an input text to tokens.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
|
82 |
+
text (:obj:`str`): input text to be tokenized.
|
83 |
+
|
84 |
+
Returns:
|
85 |
+
A list of byte tokens where each token represent the byte id in GPT2 byte dictionary
|
86 |
+
|
87 |
+
Example::
|
88 |
+
|
89 |
+
>>> tokenizer = GPT2Tokenizer()
|
90 |
+
>>> text = "Hello world!"
|
91 |
+
>>> tokens = tokenizer.tokenize(text)
|
92 |
+
>>> print(tokens)
|
93 |
+
['15496', '995', '0']
|
94 |
+
|
95 |
+
"""
|
96 |
+
bpe = self._encode(text)
|
97 |
+
|
98 |
+
return [t for t in bpe.split(' ') if t]
|
99 |
+
|
100 |
+
def convert_tokens_to_ids(self, tokens):
|
101 |
+
""" Convert list of tokens to ids.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
|
105 |
+
tokens (:obj:`list<str>`): list of tokens
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
|
109 |
+
List of ids
|
110 |
+
"""
|
111 |
+
|
112 |
+
return [self.vocab[t] for t in tokens]
|
113 |
+
|
114 |
+
def convert_ids_to_tokens(self, ids):
|
115 |
+
""" Convert list of ids to tokens.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
|
119 |
+
ids (:obj:`list<int>`): list of ids
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
|
123 |
+
List of tokens
|
124 |
+
"""
|
125 |
+
|
126 |
+
tokens = []
|
127 |
+
for i in ids:
|
128 |
+
tokens.append(self.ids_to_tokens[i])
|
129 |
+
return tokens
|
130 |
+
|
131 |
+
def split_to_words(self, text):
|
132 |
+
return self.bpe.split_to_words(text)
|
133 |
+
|
134 |
+
def decode(self, tokens):
|
135 |
+
""" Decode list of tokens to text strings.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
|
139 |
+
tokens (:obj:`list<str>`): list of tokens.
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
|
143 |
+
Text string corresponds to the input tokens.
|
144 |
+
|
145 |
+
Example::
|
146 |
+
|
147 |
+
>>> tokenizer = GPT2Tokenizer()
|
148 |
+
>>> text = "Hello world!"
|
149 |
+
>>> tokens = tokenizer.tokenize(text)
|
150 |
+
>>> print(tokens)
|
151 |
+
['15496', '995', '0']
|
152 |
+
|
153 |
+
>>> tokenizer.decode(tokens)
|
154 |
+
'Hello world!'
|
155 |
+
|
156 |
+
"""
|
157 |
+
return self.bpe.decode([int(t) for t in tokens if t not in self.special_tokens])
|
158 |
+
|
159 |
+
def add_special_token(self, token):
|
160 |
+
"""Adds a special token to the dictionary.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
token (:obj:`str`): Tthe new token/word to be added to the vocabulary.
|
164 |
+
|
165 |
+
Returns:
|
166 |
+
The id of new token in the vocabulary.
|
167 |
+
|
168 |
+
"""
|
169 |
+
self.special_tokens.append(token)
|
170 |
+
return self.add_symbol(token)
|
171 |
+
|
172 |
+
def part_of_whole_word(self, token, is_bos=False):
|
173 |
+
if is_bos:
|
174 |
+
return True
|
175 |
+
s = self._decode(token)
|
176 |
+
if (len(s)==1 and (_is_whitespace(list(s)[0]) or _is_control(list(s)[0]) or _is_punctuation(list(s)[0]))):
|
177 |
+
return False
|
178 |
+
|
179 |
+
return not s.startswith(' ')
|
180 |
+
|
181 |
+
def sym(self, id):
|
182 |
+
return self.ids_to_tokens[id]
|
183 |
+
|
184 |
+
def id(self, sym):
|
185 |
+
return self.vocab[sym]
|
186 |
+
|
187 |
+
def _encode(self, x: str) -> str:
|
188 |
+
return ' '.join(map(str, self.bpe.encode(x)))
|
189 |
+
|
190 |
+
def _decode(self, x: str) -> str:
|
191 |
+
return self.bpe.decode(map(int, x.split()))
|
192 |
+
|
193 |
+
def add_symbol(self, word, n=1):
|
194 |
+
"""Adds a word to the dictionary.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
word (:obj:`str`): Tthe new token/word to be added to the vocabulary.
|
198 |
+
n (int, optional): The frequency of the word.
|
199 |
+
|
200 |
+
Returns:
|
201 |
+
The id of the new word.
|
202 |
+
|
203 |
+
"""
|
204 |
+
if word in self.indices:
|
205 |
+
idx = self.indices[word]
|
206 |
+
self.count[idx] = self.count[idx] + n
|
207 |
+
return idx
|
208 |
+
else:
|
209 |
+
idx = len(self.symbols)
|
210 |
+
self.indices[word] = idx
|
211 |
+
self.symbols.append(word)
|
212 |
+
self.count.append(n)
|
213 |
+
return idx
|
214 |
+
|
215 |
+
def save_pretrained(self, path: str):
|
216 |
+
torch.save(self.gpt2_encoder, path)
|
modeling/mlm.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
2 |
+
# Copyright (c) Microsoft, Inc. 2020
|
3 |
+
#
|
4 |
+
# This source code is licensed under the MIT license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# This piece of code is modified based on https://github.com/huggingface/transformers
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from torch import nn
|
11 |
+
import pdb
|
12 |
+
|
13 |
+
from .bert import LayerNorm,ACT2FN
|
14 |
+
|
15 |
+
__all__ = ['MLMPredictionHead']
|
16 |
+
|
17 |
+
class MLMPredictionHead(nn.Module):
|
18 |
+
def __init__(self, config, vocab_size):
|
19 |
+
super().__init__()
|
20 |
+
self.embedding_size = getattr(config, 'embedding_size', config.hidden_size)
|
21 |
+
self.dense = nn.Linear(config.hidden_size, self.embedding_size)
|
22 |
+
self.transform_act_fn = ACT2FN[config.hidden_act] \
|
23 |
+
if isinstance(config.hidden_act, str) else config.hidden_act
|
24 |
+
|
25 |
+
self.LayerNorm = LayerNorm(self.embedding_size, config.layer_norm_eps)
|
26 |
+
self.bias = nn.Parameter(torch.zeros(vocab_size))
|
27 |
+
self.pre_norm = PreLayerNorm(config)
|
28 |
+
|
29 |
+
def forward(self, hidden_states, embeding_weight):
|
30 |
+
hidden_states = self.pre_norm(hidden_states)
|
31 |
+
hidden_states = self.dense(hidden_states)
|
32 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
33 |
+
# b x s x d
|
34 |
+
hidden_states = MaskedLayerNorm(self.LayerNorm, hidden_states)
|
35 |
+
|
36 |
+
# b x s x v
|
37 |
+
logits = torch.matmul(hidden_states, embeding_weight.t().to(hidden_states)) + self.bias
|
38 |
+
return logits
|
modeling/modeling.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling/nnmodule.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pdb
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import copy
|
5 |
+
from torch import nn, tensor
|
6 |
+
from .config import ModelConfig
|
7 |
+
from ..utils import xtqdm as tqdm
|
8 |
+
from .cache_utils import load_model_state
|
9 |
+
from .flash import GAULinear
|
10 |
+
|
11 |
+
from ..utils import get_logger
|
12 |
+
logger = get_logger()
|
13 |
+
|
14 |
+
__all__ = ['NNModule']
|
15 |
+
|
16 |
+
def truncated_normal_(shape, mean=0, std=0.09):
|
17 |
+
with torch.no_grad():
|
18 |
+
tensor = torch.zeros(shape)
|
19 |
+
tmp = tensor.new_empty(shape + (4,)).normal_()
|
20 |
+
valid = (tmp < 2) & (tmp > -2)
|
21 |
+
ind = valid.max(-1, keepdim=True)[1]
|
22 |
+
tensor.data.copy_(tmp.gather(-1, ind).squeeze(-1))
|
23 |
+
tensor.data.mul_(std).add_(mean)
|
24 |
+
return tensor
|
25 |
+
|
26 |
+
class NNModule(nn.Module):
|
27 |
+
""" An abstract class to handle weights initialization and \
|
28 |
+
a simple interface for dowloading and loading pretrained models.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
|
32 |
+
config (:obj:`~DeBERTa.deberta.ModelConfig`): The model config to the module
|
33 |
+
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(self, config, *inputs, **kwargs):
|
37 |
+
super().__init__()
|
38 |
+
self.config = config
|
39 |
+
|
40 |
+
def init_weights(self, module):
|
41 |
+
""" Apply Gaussian(mean=0, std=`config.initializer_range`) initialization to the module.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
|
45 |
+
module (:obj:`torch.nn.Module`): The module to apply the initialization.
|
46 |
+
|
47 |
+
Example::
|
48 |
+
|
49 |
+
class MyModule(NNModule):
|
50 |
+
def __init__(self, config):
|
51 |
+
# Add construction instructions
|
52 |
+
self.bert = DeBERTa(config)
|
53 |
+
|
54 |
+
# Add other modules
|
55 |
+
...
|
56 |
+
|
57 |
+
# Apply initialization
|
58 |
+
self.apply(self.init_weights)
|
59 |
+
|
60 |
+
"""
|
61 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
62 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
63 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
64 |
+
module.bias.data.zero_()
|
65 |
+
|
66 |
+
def init_weights_gau(self, module):
|
67 |
+
""" Apply Gaussian(mean=0, std=`config.initializer_range`) initialization to the module.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
|
71 |
+
module (:obj:`torch.nn.Module`): The module to apply the initialization.
|
72 |
+
|
73 |
+
Example::
|
74 |
+
|
75 |
+
class MyModule(NNModule):
|
76 |
+
def __init__(self, config):
|
77 |
+
# Add construction instructions
|
78 |
+
self.bert = DeBERTa(config)
|
79 |
+
|
80 |
+
# Add other modules
|
81 |
+
...
|
82 |
+
|
83 |
+
# Apply initialization
|
84 |
+
self.apply(self.init_weights)
|
85 |
+
|
86 |
+
"""
|
87 |
+
if isinstance(module, GAULinear):
|
88 |
+
module.init_weight()
|
89 |
+
else:
|
90 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
91 |
+
# module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
92 |
+
module.weight.data.copy_(self.initializer(module.weight.data.shape))
|
93 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
94 |
+
module.bias.data.zero_()
|
95 |
+
|
96 |
+
def initializer(self, shape, dtype=None, order=3, gain=1.0):
|
97 |
+
if shape[1] > 10000 or shape[1] < 10:
|
98 |
+
hidden_size = shape[0]
|
99 |
+
else:
|
100 |
+
hidden_size = shape[1]
|
101 |
+
gain *= self.config.num_hidden_layers ** (-1.0 / order)
|
102 |
+
stddev = 1.13684723 / hidden_size**0.5 * gain
|
103 |
+
return torch.nn.init.trunc_normal_(torch.empty(shape, dtype=dtype), std=stddev)# truncated_normal_(shape, std=stddev)
|
104 |
+
|
105 |
+
@classmethod
|
106 |
+
def load_model(cls, model_path, model_config=None, tag=None, no_cache=False, cache_dir=None , *inputs, **kwargs):
|
107 |
+
""" Instantiate a sub-class of NNModule from a pre-trained model file.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
|
111 |
+
model_path (:obj:`str`): Path or name of the pre-trained model which can be either,
|
112 |
+
|
113 |
+
- The path of pre-trained model
|
114 |
+
|
115 |
+
- The pre-trained DeBERTa model name in `DeBERTa GitHub releases <https://github.com/microsoft/DeBERTa/releases>`_, i.e. [**base, base_mnli, large, large_mnli**].
|
116 |
+
|
117 |
+
If `model_path` is `None` or `-`, then the method will create a new sub-class without initialing from pre-trained models.
|
118 |
+
|
119 |
+
model_config (:obj:`str`): The path of model config file. If it's `None`, then the method will try to find the the config in order:
|
120 |
+
|
121 |
+
1. ['config'] in the model state dictionary.
|
122 |
+
|
123 |
+
2. `model_config.json` aside the `model_path`.
|
124 |
+
|
125 |
+
If it failed to find a config the method will fail.
|
126 |
+
|
127 |
+
tag (:obj:`str`, optional): The release tag of DeBERTa, default: `None`.
|
128 |
+
|
129 |
+
no_cache (:obj:`bool`, optional): Disable local cache of downloaded models, default: `False`.
|
130 |
+
|
131 |
+
cache_dir (:obj:`str`, optional): The cache directory used to save the downloaded models, default: `None`. If it's `None`, then the models will be saved at `$HOME/.~DeBERTa`
|
132 |
+
|
133 |
+
Return:
|
134 |
+
|
135 |
+
:obj:`NNModule` : The sub-class object.
|
136 |
+
|
137 |
+
"""
|
138 |
+
# Load config
|
139 |
+
if model_config:
|
140 |
+
config = ModelConfig.from_json_file(model_config)
|
141 |
+
else:
|
142 |
+
config = None
|
143 |
+
model_config = None
|
144 |
+
model_state = None
|
145 |
+
if (model_path is not None) and (model_path.strip() == '-' or model_path.strip()==''):
|
146 |
+
model_path = None
|
147 |
+
try:
|
148 |
+
model_state, model_config = load_model_state(model_path, tag=tag, no_cache=no_cache, cache_dir=cache_dir)
|
149 |
+
except Exception as exp:
|
150 |
+
raise Exception(f'Failed to get model {model_path}. Exception: {exp}')
|
151 |
+
|
152 |
+
if config is not None and model_config is not None:
|
153 |
+
for k in config.__dict__:
|
154 |
+
if k not in ['hidden_size',
|
155 |
+
'intermediate_size',
|
156 |
+
'num_attention_heads',
|
157 |
+
'num_hidden_layers',
|
158 |
+
'vocab_size',
|
159 |
+
'max_position_embeddings'] or (k not in model_config.__dict__) or (model_config.__dict__[k] < 0):
|
160 |
+
model_config.__dict__[k] = config.__dict__[k]
|
161 |
+
if model_config is not None:
|
162 |
+
config = copy.copy(model_config)
|
163 |
+
vocab_size = config.vocab_size
|
164 |
+
# Instantiate model.
|
165 |
+
model = cls(config, *inputs, **kwargs)
|
166 |
+
if not model_state:
|
167 |
+
return model
|
168 |
+
# copy state_dict so _load_from_state_dict can modify it
|
169 |
+
state_dict = model_state.copy()
|
170 |
+
|
171 |
+
missing_keys = []
|
172 |
+
unexpected_keys = []
|
173 |
+
error_msgs = []
|
174 |
+
metadata = getattr(state_dict, '_metadata', None)
|
175 |
+
def load(module, prefix=''):
|
176 |
+
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
177 |
+
module._load_from_state_dict(
|
178 |
+
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
|
179 |
+
for name, child in module._modules.items():
|
180 |
+
if child is not None:
|
181 |
+
load(child, prefix + name + '.')
|
182 |
+
load(model)
|
183 |
+
logger.warning(f'Missing keys: {missing_keys}, unexpected_keys: {unexpected_keys}, error_msgs: {error_msgs}')
|
184 |
+
return model
|
modeling/ops.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft, Inc. 2020
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
# Zhou Bo
|
7 |
+
# Date: 01/15/2020
|
8 |
+
#
|
9 |
+
|
10 |
+
import pdb
|
11 |
+
import math
|
12 |
+
from packaging import version
|
13 |
+
import torch
|
14 |
+
from torch.nn import LayerNorm
|
15 |
+
from wywLM.utils.jit_tracing import traceable
|
16 |
+
|
17 |
+
if version.Version(torch.__version__) >= version.Version('1.0.0'):
|
18 |
+
from torch import _softmax_backward_data as _softmax_backward_data
|
19 |
+
else:
|
20 |
+
from torch import softmax_backward_data as _softmax_backward_data
|
21 |
+
|
22 |
+
__all__ = ['StableDropout', 'MaskedLayerNorm', 'XSoftmax', 'ACT2FN', 'LayerNorm']
|
23 |
+
|
24 |
+
@traceable
|
25 |
+
class XSoftmax(torch.autograd.Function):
|
26 |
+
""" Masked Softmax which is optimized for saving memory
|
27 |
+
|
28 |
+
Args:
|
29 |
+
|
30 |
+
input (:obj:`torch.tensor`): The input tensor that will apply softmax.
|
31 |
+
mask (:obj:`torch.IntTensor`): The mask matrix where 0 indicate that element will be ignored in the softmax caculation.
|
32 |
+
dim (int): The dimenssion that will apply softmax.
|
33 |
+
|
34 |
+
Example::
|
35 |
+
|
36 |
+
import torch
|
37 |
+
from DeBERTa.deberta import XSoftmax
|
38 |
+
# Make a tensor
|
39 |
+
x = torch.randn([4,20,100])
|
40 |
+
# Create a mask
|
41 |
+
mask = (x>0).int()
|
42 |
+
y = XSoftmax.apply(x, mask, dim=-1)
|
43 |
+
|
44 |
+
"""
|
45 |
+
|
46 |
+
@staticmethod
|
47 |
+
def forward(self, input, mask, dim):
|
48 |
+
"""
|
49 |
+
"""
|
50 |
+
|
51 |
+
self.dim = dim
|
52 |
+
if mask is None:
|
53 |
+
mask = torch.ones_like(input)
|
54 |
+
if version.Version(torch.__version__) >= version.Version('1.2.0a'):
|
55 |
+
rmask = ~(mask.bool())
|
56 |
+
else:
|
57 |
+
rmask = (1-mask).byte() # This line is not supported by Onnx tracing.
|
58 |
+
|
59 |
+
output = input.masked_fill(rmask, torch.finfo(input.dtype).min) # float('-inf')
|
60 |
+
output = torch.softmax(output, self.dim)
|
61 |
+
output.masked_fill_(rmask, 0)
|
62 |
+
self.save_for_backward(output)
|
63 |
+
return output
|
64 |
+
|
65 |
+
@staticmethod
|
66 |
+
def backward(self, grad_output):
|
67 |
+
"""
|
68 |
+
"""
|
69 |
+
|
70 |
+
output, = self.saved_tensors
|
71 |
+
if '1.11' in torch.__version__:
|
72 |
+
inputGrad = _softmax_backward_data(grad_output, output, self.dim, output.dtype)
|
73 |
+
else:
|
74 |
+
inputGrad = _softmax_backward_data(grad_output, output, self.dim, output.dtype)
|
75 |
+
return inputGrad, None, None
|
76 |
+
|
77 |
+
@staticmethod
|
78 |
+
def symbolic(g, self, mask, dim):
|
79 |
+
import torch.onnx.symbolic_helper as sym_help
|
80 |
+
from torch.onnx.symbolic_opset9 import masked_fill, softmax
|
81 |
+
|
82 |
+
mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx['Long'])
|
83 |
+
r_mask = g.op("Cast", g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value), to_i=sym_help.cast_pytorch_to_onnx['Byte'])
|
84 |
+
output = masked_fill(g, self, r_mask, g.op("Constant", value_t=torch.tensor(float('-inf'))))
|
85 |
+
output = softmax(g, output, dim)
|
86 |
+
return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.uint8)))
|
87 |
+
|
88 |
+
class DropoutContext(object):
|
89 |
+
def __init__(self):
|
90 |
+
self.dropout = 0
|
91 |
+
self.mask = None
|
92 |
+
self.scale = 1
|
93 |
+
self.reuse_mask = True
|
94 |
+
|
95 |
+
def get_mask(input, local_context):
|
96 |
+
if not isinstance(local_context, DropoutContext):
|
97 |
+
dropout = local_context
|
98 |
+
mask = None
|
99 |
+
else:
|
100 |
+
dropout = local_context.dropout
|
101 |
+
dropout *= local_context.scale
|
102 |
+
mask = local_context.mask if local_context.reuse_mask else None
|
103 |
+
|
104 |
+
if dropout>0 and mask is None:
|
105 |
+
if version.Version(torch.__version__) >= version.Version('1.2.0a'):
|
106 |
+
mask=(1-torch.empty_like(input).bernoulli_(1-dropout)).bool()
|
107 |
+
else:
|
108 |
+
mask=(1-torch.empty_like(input).bernoulli_(1-dropout)).byte()
|
109 |
+
|
110 |
+
if isinstance(local_context, DropoutContext):
|
111 |
+
if local_context.mask is None:
|
112 |
+
local_context.mask = mask
|
113 |
+
|
114 |
+
return mask, dropout
|
115 |
+
|
116 |
+
@traceable
|
117 |
+
class XDropout(torch.autograd.Function):
|
118 |
+
@staticmethod
|
119 |
+
def forward(ctx, input, local_ctx):
|
120 |
+
mask, dropout = get_mask(input, local_ctx)
|
121 |
+
ctx.scale=1.0/(1-dropout)
|
122 |
+
if dropout>0:
|
123 |
+
ctx.save_for_backward(mask)
|
124 |
+
return input.masked_fill(mask, 0)*ctx.scale
|
125 |
+
else:
|
126 |
+
return input
|
127 |
+
|
128 |
+
@staticmethod
|
129 |
+
def backward(ctx, grad_output):
|
130 |
+
if ctx.scale > 1:
|
131 |
+
mask, = ctx.saved_tensors
|
132 |
+
return grad_output.masked_fill(mask, 0)*ctx.scale, None
|
133 |
+
else:
|
134 |
+
return grad_output, None
|
135 |
+
|
136 |
+
class StableDropout(torch.nn.Module):
|
137 |
+
""" Optimized dropout module for stabilizing the training
|
138 |
+
|
139 |
+
Args:
|
140 |
+
|
141 |
+
drop_prob (float): the dropout probabilities
|
142 |
+
|
143 |
+
"""
|
144 |
+
|
145 |
+
def __init__(self, drop_prob):
|
146 |
+
super().__init__()
|
147 |
+
self.drop_prob = drop_prob
|
148 |
+
self.count = 0
|
149 |
+
self.context_stack = None
|
150 |
+
|
151 |
+
def forward(self, x):
|
152 |
+
""" Call the module
|
153 |
+
|
154 |
+
Args:
|
155 |
+
|
156 |
+
x (:obj:`torch.tensor`): The input tensor to apply dropout
|
157 |
+
|
158 |
+
|
159 |
+
"""
|
160 |
+
if self.training and self.drop_prob>0:
|
161 |
+
return XDropout.apply(x, self.get_context())
|
162 |
+
return x
|
163 |
+
|
164 |
+
def clear_context(self):
|
165 |
+
self.count = 0
|
166 |
+
self.context_stack = None
|
167 |
+
|
168 |
+
def init_context(self, reuse_mask=True, scale = 1):
|
169 |
+
if self.context_stack is None:
|
170 |
+
self.context_stack = []
|
171 |
+
self.count = 0
|
172 |
+
for c in self.context_stack:
|
173 |
+
c.reuse_mask = reuse_mask
|
174 |
+
c.scale = scale
|
175 |
+
|
176 |
+
def get_context(self):
|
177 |
+
if self.context_stack is not None:
|
178 |
+
if self.count >= len(self.context_stack):
|
179 |
+
self.context_stack.append(DropoutContext())
|
180 |
+
ctx = self.context_stack[self.count]
|
181 |
+
ctx.dropout = self.drop_prob
|
182 |
+
self.count += 1
|
183 |
+
return ctx
|
184 |
+
else:
|
185 |
+
return self.drop_prob
|
186 |
+
|
187 |
+
def MaskedLayerNorm(layerNorm, input, mask = None):
|
188 |
+
""" Masked LayerNorm which will apply mask over the output of LayerNorm to avoid inaccurate updatings to the LayerNorm module.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
layernorm (:obj:`~DeBERTa.deberta.LayerNorm`): LayerNorm module or function
|
192 |
+
input (:obj:`torch.tensor`): The input tensor
|
193 |
+
mask (:obj:`torch.IntTensor`): The mask to applied on the output of LayerNorm where `0` indicate the output of that element will be ignored, i.e. set to `0`
|
194 |
+
|
195 |
+
Example::
|
196 |
+
|
197 |
+
# Create a tensor b x n x d
|
198 |
+
x = torch.randn([1,10,100])
|
199 |
+
m = torch.tensor([[1,1,1,0,0,0,0,0,0,0]], dtype=torch.int)
|
200 |
+
LayerNorm = DeBERTa.deberta.LayerNorm(100)
|
201 |
+
y = MaskedLayerNorm(LayerNorm, x, m)
|
202 |
+
|
203 |
+
"""
|
204 |
+
output = layerNorm(input).to(input)
|
205 |
+
if mask is None:
|
206 |
+
return output
|
207 |
+
if mask.dim()!=input.dim():
|
208 |
+
if mask.dim()==4:
|
209 |
+
mask=mask.squeeze(1).squeeze(1)
|
210 |
+
mask = mask.unsqueeze(2)
|
211 |
+
mask = mask.to(output.dtype)
|
212 |
+
return output*mask
|
213 |
+
|
214 |
+
def gelu(x):
|
215 |
+
"""Implementation of the gelu activation function.
|
216 |
+
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
|
217 |
+
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
218 |
+
"""
|
219 |
+
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
220 |
+
|
221 |
+
|
222 |
+
def swish(x):
|
223 |
+
return x * torch.sigmoid(x)
|
224 |
+
|
225 |
+
def linear_act(x):
|
226 |
+
return x
|
227 |
+
|
228 |
+
def sequence_masking(x, mask, value=0, axis=None):
|
229 |
+
"""为序列条件mask的函数
|
230 |
+
mask: 形如(batch_size, seq_len)的0-1矩阵;
|
231 |
+
value: mask部分要被替换成的值,可以是'-inf'或'inf';
|
232 |
+
axis: 序列所在轴,默认为1;
|
233 |
+
"""
|
234 |
+
if mask is None:
|
235 |
+
return x
|
236 |
+
else:
|
237 |
+
x_dtype = x.dtype
|
238 |
+
if x_dtype == torch.bool:
|
239 |
+
x = x.to(torch.int32)
|
240 |
+
# if mask.dtype != x.dtype:
|
241 |
+
# mask = mask.to(x.dtype)
|
242 |
+
if value == '-inf':
|
243 |
+
value = -float('inf')
|
244 |
+
elif value == 'inf':
|
245 |
+
value = float('inf')
|
246 |
+
if axis is None:
|
247 |
+
axis = 1
|
248 |
+
elif axis < 0:
|
249 |
+
axis = x.dim() + axis
|
250 |
+
assert axis > 0, 'axis must be greater than 0'
|
251 |
+
if mask.dim() != x.dim():
|
252 |
+
mask = align(mask, [0, axis], x.dim())
|
253 |
+
# value = value.to(x.dtype)
|
254 |
+
x = x.masked_fill_(~mask.bool(), value) # * mask + mask.fill_(value)
|
255 |
+
if x_dtype == torch.bool:
|
256 |
+
x = x.to(torch.bool)
|
257 |
+
return x
|
258 |
+
|
259 |
+
def align(tensor, axes, ndim=None):
|
260 |
+
"""重新对齐tensor(批量版expand_dims)
|
261 |
+
axes:原来的第i维对齐新tensor的第axes[i]维;
|
262 |
+
ndim:新tensor的维度。
|
263 |
+
"""
|
264 |
+
assert len(axes) == tensor.dim()
|
265 |
+
assert ndim or min(axes) >= 0
|
266 |
+
ndim = ndim or max(axes) + 1
|
267 |
+
indices = [None] * ndim
|
268 |
+
for i in axes:
|
269 |
+
indices[i] = slice(None)
|
270 |
+
return tensor[indices]
|
271 |
+
|
272 |
+
ACT2FN = {"gelu": torch.nn.functional.gelu, "relu": torch.nn.functional.relu, "swish": swish, "tanh": torch.tanh, "linear": linear_act, 'sigmoid': torch.sigmoid, 'silu': torch.nn.functional.silu}
|
273 |
+
|
274 |
+
|
modeling/pooling.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Zhou Bo
|
3 |
+
#
|
4 |
+
#
|
5 |
+
"""
|
6 |
+
Pooling functions
|
7 |
+
"""
|
8 |
+
|
9 |
+
from torch import nn
|
10 |
+
import copy
|
11 |
+
import json
|
12 |
+
import pdb
|
13 |
+
from .bert import ACT2FN
|
14 |
+
from .ops import StableDropout
|
15 |
+
from .config import AbsModelConfig
|
16 |
+
|
17 |
+
__all__ = ['PoolConfig', 'ContextPooler']
|
18 |
+
|
19 |
+
class PoolConfig(AbsModelConfig):
|
20 |
+
"""Configuration class to store the configuration of `pool layer`.
|
21 |
+
|
22 |
+
Parameters:
|
23 |
+
|
24 |
+
config (:class:`~DeBERTa.deberta.ModelConfig`): The model config. The field of pool config will be initalized with the `pooling` field in model config.
|
25 |
+
|
26 |
+
Attributes:
|
27 |
+
|
28 |
+
hidden_size (int): Size of the encoder layers and the pooler layer, default: `768`.
|
29 |
+
|
30 |
+
dropout (float): The dropout rate applied on the output of `[CLS]` token,
|
31 |
+
|
32 |
+
hidden_act (:obj:`str`): The activation function of the projection layer, it can be one of ['gelu', 'tanh'].
|
33 |
+
|
34 |
+
Example::
|
35 |
+
|
36 |
+
# Here is the content of an exmple model config file in json format
|
37 |
+
|
38 |
+
{
|
39 |
+
"hidden_size": 768,
|
40 |
+
"num_hidden_layers" 12,
|
41 |
+
"num_attention_heads": 12,
|
42 |
+
"intermediate_size": 3072,
|
43 |
+
...
|
44 |
+
"pooling": {
|
45 |
+
"hidden_size": 768,
|
46 |
+
"hidden_act": "gelu",
|
47 |
+
"dropout": 0.1
|
48 |
+
}
|
49 |
+
}
|
50 |
+
|
51 |
+
"""
|
52 |
+
def __init__(self, config=None):
|
53 |
+
"""Constructs PoolConfig.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
`config`: the config of the model. The field of pool config will be initalized with the 'pooling' field in model config.
|
57 |
+
"""
|
58 |
+
|
59 |
+
self.hidden_size = 768
|
60 |
+
self.dropout = 0
|
61 |
+
self.hidden_act = 'gelu'
|
62 |
+
if config:
|
63 |
+
pool_config = getattr(config, 'pooling', config)
|
64 |
+
if isinstance(pool_config, dict):
|
65 |
+
pool_config = AbsModelConfig.from_dict(pool_config)
|
66 |
+
self.hidden_size = getattr(pool_config, 'hidden_size', config.hidden_size)
|
67 |
+
self.dropout = getattr(pool_config, 'dropout', 0)
|
68 |
+
self.hidden_act = getattr(pool_config, 'hidden_act', 'gelu')
|
69 |
+
|
70 |
+
class ContextPooler(nn.Module):
|
71 |
+
def __init__(self, config):
|
72 |
+
super().__init__()
|
73 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
74 |
+
self.dropout = StableDropout(config.dropout)
|
75 |
+
self.config = config
|
76 |
+
|
77 |
+
def forward(self, hidden_states, mask = None):
|
78 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
79 |
+
# to the first token.
|
80 |
+
|
81 |
+
context_token = hidden_states[:, 0]
|
82 |
+
context_token = self.dropout(context_token)
|
83 |
+
pooled_output = self.dense(context_token)
|
84 |
+
pooled_output = ACT2FN[self.config.hidden_act](pooled_output)
|
85 |
+
return pooled_output
|
86 |
+
|
87 |
+
def output_dim(self):
|
88 |
+
return self.config.hidden_size
|
modeling/pretrained_models.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
modeling/spm_tokenizer.py
ADDED
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft, Inc. 2020
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
# Zhou Bo
|
7 |
+
# Date: 11/15/2020
|
8 |
+
#
|
9 |
+
|
10 |
+
|
11 |
+
import sentencepiece as sp
|
12 |
+
import six
|
13 |
+
import unicodedata
|
14 |
+
import os
|
15 |
+
import regex as re
|
16 |
+
from .cache_utils import load_vocab
|
17 |
+
import loguru
|
18 |
+
logger=loguru.logger
|
19 |
+
|
20 |
+
|
21 |
+
import pdb
|
22 |
+
|
23 |
+
__all__ = ['SPMTokenizer']
|
24 |
+
|
25 |
+
class SPMTokenizer:
|
26 |
+
def __init__(self, vocab_file, do_lower_case=False, special_tokens=None, bpe_dropout=0, split_by_punct=False):
|
27 |
+
self.split_by_punct = split_by_punct
|
28 |
+
spm = sp.SentencePieceProcessor()
|
29 |
+
assert os.path.exists(vocab_file)
|
30 |
+
spm.load(vocab_file)
|
31 |
+
bpe_vocab_size = spm.GetPieceSize()
|
32 |
+
# Token map
|
33 |
+
# <unk> 0+1
|
34 |
+
# <s> 1+1
|
35 |
+
# </s> 2+1
|
36 |
+
self.vocab = {spm.IdToPiece(i):i for i in range(bpe_vocab_size)}
|
37 |
+
self.id_to_tokens = [spm.IdToPiece(i) for i in range(bpe_vocab_size)]
|
38 |
+
#self.vocab['[PAD]'] = 0
|
39 |
+
#self.vocab['[CLS]'] = 1
|
40 |
+
#self.vocab['[SEP]'] = 2
|
41 |
+
#self.vocab['[UNK]'] = 3
|
42 |
+
|
43 |
+
_special_tokens = ['[MASK]', '[SEP]', '[PAD]', '[UNK]', '[CLS]']
|
44 |
+
self.special_tokens = []
|
45 |
+
if special_tokens is not None:
|
46 |
+
_special_tokens.extend(special_tokens)
|
47 |
+
for t in _special_tokens:
|
48 |
+
self.add_special_token(t)
|
49 |
+
|
50 |
+
self.spm = spm
|
51 |
+
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
52 |
+
|
53 |
+
def tokenize(self, text):
|
54 |
+
pieces = self._encode_as_pieces(text)
|
55 |
+
def _norm(x):
|
56 |
+
if x not in self.vocab or x=='<unk>':
|
57 |
+
return '[UNK]'
|
58 |
+
else:
|
59 |
+
return x
|
60 |
+
pieces = [_norm(p) for p in pieces]
|
61 |
+
return pieces
|
62 |
+
|
63 |
+
def convert_tokens_to_ids(self, tokens):
|
64 |
+
return [self.vocab[t] if t in self.vocab else 1 for t in tokens]
|
65 |
+
|
66 |
+
def convert_ids_to_tokens(self, ids):
|
67 |
+
tokens = []
|
68 |
+
for i in ids:
|
69 |
+
tokens.append(self.ids_to_tokens[i])
|
70 |
+
return tokens
|
71 |
+
|
72 |
+
def decode(self, tokens, start=-1, end=-1, raw_text=None):
|
73 |
+
if raw_text is None:
|
74 |
+
return self.spm.decode_pieces([t for t in tokens if t not in self.special_tokens])
|
75 |
+
else:
|
76 |
+
words = self.split_to_words(raw_text)
|
77 |
+
word_tokens = [self.tokenize(w) for w in words]
|
78 |
+
wt = [w for t in word_tokens for w in t]
|
79 |
+
#assert tokens == wt, f'{tokens} || {wt}'
|
80 |
+
if wt!=tokens:
|
81 |
+
for a,b in zip(wt, tokens):
|
82 |
+
if a!=b:
|
83 |
+
pdb.set_trace()
|
84 |
+
token2words = [0]*len(tokens)
|
85 |
+
tid = 0
|
86 |
+
for i,w in enumerate(word_tokens):
|
87 |
+
for k,t in enumerate(w):
|
88 |
+
token2words[tid] = i
|
89 |
+
tid += 1
|
90 |
+
word_start = token2words[start]
|
91 |
+
word_end = token2words[end] if end <len(tokens) else len(words)
|
92 |
+
text = ''.join(words[word_start:word_end])
|
93 |
+
return text
|
94 |
+
|
95 |
+
def add_special_token(self, token):
|
96 |
+
if token not in self.special_tokens:
|
97 |
+
self.special_tokens.append(token)
|
98 |
+
if token not in self.vocab:
|
99 |
+
self.vocab[token] = len(self.vocab)
|
100 |
+
self.id_to_tokens.append(token)
|
101 |
+
return self.id(token)
|
102 |
+
|
103 |
+
def part_of_whole_word(self, token, is_bos=False):
|
104 |
+
if is_bos:
|
105 |
+
return True
|
106 |
+
if (len(token)==1 and (_is_whitespace(list(token)[0]) or _is_control(list(token)[0]) or _is_punctuation(list(token)[0]))) or token in self.special_tokens:
|
107 |
+
return False
|
108 |
+
|
109 |
+
word_start = b'\xe2\x96\x81'.decode('utf-8')
|
110 |
+
return not token.startswith(word_start)
|
111 |
+
|
112 |
+
def pad(self):
|
113 |
+
return '[PAD]'
|
114 |
+
|
115 |
+
def bos(self):
|
116 |
+
return '[CLS]'
|
117 |
+
|
118 |
+
def eos(self):
|
119 |
+
return '[SEP]'
|
120 |
+
|
121 |
+
def unk(self):
|
122 |
+
return '[UNK]'
|
123 |
+
|
124 |
+
def mask(self):
|
125 |
+
return '[MASK]'
|
126 |
+
|
127 |
+
def sym(self, id):
|
128 |
+
return self.ids_to_tokens[id]
|
129 |
+
|
130 |
+
def id(self, sym):
|
131 |
+
return self.vocab[sym] if sym in self.vocab else 1
|
132 |
+
|
133 |
+
def _encode_as_pieces(self, text):
|
134 |
+
text = convert_to_unicode(text)
|
135 |
+
if self.split_by_punct:
|
136 |
+
words = self._run_split_on_punc(text)
|
137 |
+
pieces = [self.spm.encode_as_pieces(w) for w in words]
|
138 |
+
return [p for w in pieces for p in w]
|
139 |
+
else:
|
140 |
+
return self.spm.encode_as_pieces(text)
|
141 |
+
|
142 |
+
def split_to_words(self, text):
|
143 |
+
pieces = self._encode_as_pieces(text)
|
144 |
+
word_start = b'\xe2\x96\x81'.decode('utf-8')
|
145 |
+
words = []
|
146 |
+
offset = 0
|
147 |
+
prev_end = 0
|
148 |
+
for i,p in enumerate(pieces):
|
149 |
+
if p.startswith(word_start):
|
150 |
+
if offset>prev_end:
|
151 |
+
words.append(text[prev_end:offset])
|
152 |
+
prev_end = offset
|
153 |
+
w = p.replace(word_start, '')
|
154 |
+
else:
|
155 |
+
w = p
|
156 |
+
try:
|
157 |
+
s = text.index(w, offset)
|
158 |
+
pn = ""
|
159 |
+
k = i+1
|
160 |
+
while k < len(pieces):
|
161 |
+
pn = pieces[k].replace(word_start, '')
|
162 |
+
if len(pn)>0:
|
163 |
+
break
|
164 |
+
k += 1
|
165 |
+
|
166 |
+
if len(pn)>0 and pn in text[offset:s]:
|
167 |
+
offset = offset + 1
|
168 |
+
else:
|
169 |
+
offset = s + len(w)
|
170 |
+
except:
|
171 |
+
offset = offset + 1
|
172 |
+
|
173 |
+
if prev_end< offset:
|
174 |
+
words.append(text[prev_end:offset])
|
175 |
+
|
176 |
+
return words
|
177 |
+
|
178 |
+
def _run_strip_accents(self, text):
|
179 |
+
"""Strips accents from a piece of text."""
|
180 |
+
text = unicodedata.normalize("NFD", text)
|
181 |
+
output = []
|
182 |
+
for char in text:
|
183 |
+
cat = unicodedata.category(char)
|
184 |
+
if cat == "Mn":
|
185 |
+
continue
|
186 |
+
output.append(char)
|
187 |
+
return "".join(output)
|
188 |
+
|
189 |
+
def _run_split_on_punc(self, text):
|
190 |
+
"""Splits punctuation on a piece of text."""
|
191 |
+
#words = list(re.findall(self.pat, text))
|
192 |
+
chars = list(text)
|
193 |
+
i = 0
|
194 |
+
start_new_word = True
|
195 |
+
output = []
|
196 |
+
while i < len(chars):
|
197 |
+
char = chars[i]
|
198 |
+
if _is_punctuation(char):
|
199 |
+
output.append([char])
|
200 |
+
start_new_word = True
|
201 |
+
else:
|
202 |
+
if start_new_word:
|
203 |
+
output.append([])
|
204 |
+
start_new_word = False
|
205 |
+
output[-1].append(char)
|
206 |
+
i += 1
|
207 |
+
|
208 |
+
return ["".join(x) for x in output]
|
209 |
+
|
210 |
+
def _tokenize_chinese_chars(self, text):
|
211 |
+
"""Adds whitespace around any CJK character."""
|
212 |
+
output = []
|
213 |
+
for char in text:
|
214 |
+
cp = ord(char)
|
215 |
+
if self._is_chinese_char(cp):
|
216 |
+
output.append(" ")
|
217 |
+
output.append(char)
|
218 |
+
output.append(" ")
|
219 |
+
else:
|
220 |
+
output.append(char)
|
221 |
+
return "".join(output)
|
222 |
+
|
223 |
+
def _is_chinese_char(self, cp):
|
224 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
225 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
226 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
227 |
+
#
|
228 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
229 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
230 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
231 |
+
# space-separated words, so they are not treated specially and handled
|
232 |
+
# like the all of the other languages.
|
233 |
+
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
|
234 |
+
(cp >= 0x3400 and cp <= 0x4DBF) or #
|
235 |
+
(cp >= 0x20000 and cp <= 0x2A6DF) or #
|
236 |
+
(cp >= 0x2A700 and cp <= 0x2B73F) or #
|
237 |
+
(cp >= 0x2B740 and cp <= 0x2B81F) or #
|
238 |
+
(cp >= 0x2B820 and cp <= 0x2CEAF) or
|
239 |
+
(cp >= 0xF900 and cp <= 0xFAFF) or #
|
240 |
+
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
|
241 |
+
return True
|
242 |
+
|
243 |
+
return False
|
244 |
+
|
245 |
+
def _clean_text(self, text):
|
246 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
247 |
+
output = []
|
248 |
+
for char in text:
|
249 |
+
cp = ord(char)
|
250 |
+
if cp == 0 or cp == 0xfffd or _is_control(char):
|
251 |
+
continue
|
252 |
+
if _is_whitespace(char):
|
253 |
+
output.append(" ")
|
254 |
+
else:
|
255 |
+
output.append(char)
|
256 |
+
return "".join(output)
|
257 |
+
|
258 |
+
|
259 |
+
def _is_whitespace(char):
|
260 |
+
"""Checks whether `chars` is a whitespace character."""
|
261 |
+
# \t, \n, and \r are technically contorl characters but we treat them
|
262 |
+
# as whitespace since they are generally considered as such.
|
263 |
+
if char == " " or char == "\t" or char == "\n" or char == "\r":
|
264 |
+
return True
|
265 |
+
cat = unicodedata.category(char)
|
266 |
+
if cat == "Zs":
|
267 |
+
return True
|
268 |
+
return False
|
269 |
+
|
270 |
+
def _is_control(char):
|
271 |
+
"""Checks whether `chars` is a control character."""
|
272 |
+
# These are technically control characters but we count them as whitespace
|
273 |
+
# characters.
|
274 |
+
if char == "\t" or char == "\n" or char == "\r":
|
275 |
+
return False
|
276 |
+
cat = unicodedata.category(char)
|
277 |
+
if cat.startswith("C"):
|
278 |
+
return True
|
279 |
+
return False
|
280 |
+
|
281 |
+
def _is_punctuation(char):
|
282 |
+
"""Checks whether `chars` is a punctuation character."""
|
283 |
+
cp = ord(char)
|
284 |
+
# We treat all non-letter/number ASCII as punctuation.
|
285 |
+
# Characters such as "^", "$", and "`" are not in the Unicode
|
286 |
+
# Punctuation class but we treat them as punctuation anyways, for
|
287 |
+
# consistency.
|
288 |
+
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
|
289 |
+
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
|
290 |
+
return True
|
291 |
+
cat = unicodedata.category(char)
|
292 |
+
if cat.startswith("P"):
|
293 |
+
return True
|
294 |
+
return False
|
295 |
+
|
296 |
+
def whitespace_tokenize(text):
|
297 |
+
"""Runs basic whitespace cleaning and splitting on a peice of text."""
|
298 |
+
text = text.strip()
|
299 |
+
if not text:
|
300 |
+
return []
|
301 |
+
tokens = text.split()
|
302 |
+
return tokens
|
303 |
+
|
304 |
+
def convert_to_unicode(text):
|
305 |
+
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
|
306 |
+
if six.PY3:
|
307 |
+
if isinstance(text, str):
|
308 |
+
return text
|
309 |
+
elif isinstance(text, bytes):
|
310 |
+
return text.decode("utf-8", "ignore")
|
311 |
+
else:
|
312 |
+
raise ValueError("Unsupported string type: %s" % (type(text)))
|
313 |
+
elif six.PY2:
|
314 |
+
if isinstance(text, str):
|
315 |
+
return text.decode("utf-8", "ignore")
|
316 |
+
elif isinstance(text, unicode):
|
317 |
+
return text
|
318 |
+
else:
|
319 |
+
raise ValueError("Unsupported string type: %s" % (type(text)))
|
320 |
+
else:
|
321 |
+
raise ValueError("Not running on Python2 or Python 3?")
|
322 |
+
|
modeling/tokenizers.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Zhou Bo
|
3 |
+
|
4 |
+
#
|
5 |
+
|
6 |
+
""" tokenizers
|
7 |
+
"""
|
8 |
+
|
9 |
+
from .spm_tokenizer import *
|
10 |
+
from .gpt2_tokenizer import GPT2Tokenizer
|
11 |
+
from wywLM.models import BertTokenizer
|
12 |
+
|
13 |
+
__all__ = ['tokenizers']
|
14 |
+
tokenizers={
|
15 |
+
'gpt2': GPT2Tokenizer,
|
16 |
+
'spm': SPMTokenizer,
|
17 |
+
'bert': BertTokenizer
|
18 |
+
}
|
modeling/wywlm_modeling.py
ADDED
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft, Inc. 2020
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
#
|
6 |
+
# Zhou Bo
|
7 |
+
# Date: 01/15/2020
|
8 |
+
#
|
9 |
+
|
10 |
+
import copy
|
11 |
+
import torch
|
12 |
+
import os
|
13 |
+
import random
|
14 |
+
|
15 |
+
import json
|
16 |
+
from .ops import *
|
17 |
+
from .bert import *
|
18 |
+
from .bert import BertLayer
|
19 |
+
from .config import ModelConfig
|
20 |
+
from .cache_utils import load_model_state
|
21 |
+
from .nnmodule import NNModule
|
22 |
+
|
23 |
+
# from ..utils.bad_grad_viz import register_hooks
|
24 |
+
|
25 |
+
__all__ = ['WywLM']
|
26 |
+
|
27 |
+
def flatten_states(q_states, mask_index):
|
28 |
+
q_states = q_states.reshape((-1, q_states.size(-1)))
|
29 |
+
q_states = q_states.index_select(0, mask_index)
|
30 |
+
return q_states
|
31 |
+
|
32 |
+
|
33 |
+
class UGDecoder(torch.nn.Module):
|
34 |
+
def __init__(self, config, vocab_size):
|
35 |
+
super().__init__()
|
36 |
+
self.config = config
|
37 |
+
self.position_biased_input = getattr(config, 'position_biased_input', True)
|
38 |
+
# self.layer = torch.nn.ModuleList([BertLayer(config) for _ in range(2)])
|
39 |
+
|
40 |
+
# self.causal_mask = torch.tril(torch.ones((input_ids.dim(0), input_ids.dim(1), input_ids.dim(1))), diagonal=0)
|
41 |
+
|
42 |
+
def forward(self, ctx_layers, word_embedding, input_ids, z_states, attention_mask, \
|
43 |
+
encoder, target_ids=None, relative_pos=None, decode=False, s2s_idx=None):
|
44 |
+
causal_outputs, lm_outputs = self.emd_context_layer(ctx_layers, z_states, attention_mask,
|
45 |
+
encoder, target_ids, input_ids,
|
46 |
+
relative_pos=relative_pos, decode=decode,
|
47 |
+
word_embedding=word_embedding, s2s_idx=s2s_idx)
|
48 |
+
# loss_fct = torch.nn.CrossEntropyLoss(reduction='none')
|
49 |
+
|
50 |
+
# ctx_layer = mlm_ctx_layers[-1]
|
51 |
+
|
52 |
+
# lm_logits = lm_logits.view(-1, lm_logits.size(-1))
|
53 |
+
|
54 |
+
return causal_outputs[-1], lm_outputs[-1]
|
55 |
+
|
56 |
+
def emd_context_layer(self, encoder_layers, z_states, attention_mask, encoder, target_ids, input_ids,\
|
57 |
+
relative_pos=None, decode=False, word_embedding=None, s2s_idx=None):
|
58 |
+
# if decode:
|
59 |
+
# attention_mask = torch.tril(torch.ones((input_ids.shape[0], 1, input_ids.shape[1], input_ids.shape[1])), diagonal=0).to(input_ids.device)
|
60 |
+
# else:
|
61 |
+
if attention_mask.dim()<=2:
|
62 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
63 |
+
att_mask = extended_attention_mask.byte()
|
64 |
+
attention_mask = att_mask*att_mask.squeeze(-2).unsqueeze(-1)
|
65 |
+
elif attention_mask.dim()==3:
|
66 |
+
attention_mask = attention_mask.unsqueeze(1)
|
67 |
+
|
68 |
+
|
69 |
+
if not self.position_biased_input:
|
70 |
+
|
71 |
+
|
72 |
+
lm_outputs = []
|
73 |
+
# else:
|
74 |
+
hidden_states = encoder_layers[-2]
|
75 |
+
layers = [encoder.layer[-1] for _ in range(2)]
|
76 |
+
z_states += hidden_states
|
77 |
+
query_states = z_states
|
78 |
+
query_mask = attention_mask
|
79 |
+
rel_embeddings = encoder.get_rel_embedding()
|
80 |
+
for layer in layers:
|
81 |
+
# TODO: pass relative pos ids
|
82 |
+
output = layer(hidden_states, query_mask, return_att=False,
|
83 |
+
query_states=query_states, relative_pos=relative_pos,
|
84 |
+
rel_embeddings=rel_embeddings)
|
85 |
+
query_states = output
|
86 |
+
lm_outputs.append(query_states)
|
87 |
+
|
88 |
+
# if decode:
|
89 |
+
attention_mask = torch.tril(torch.ones((input_ids.shape[0], 1, input_ids.shape[1], input_ids.shape[1])),
|
90 |
+
diagonal=0).to(input_ids.device)
|
91 |
+
causal_outputs = []
|
92 |
+
# with torch.no_grad():
|
93 |
+
target_embd = word_embedding(target_ids)
|
94 |
+
|
95 |
+
target_embd += z_states.detach()
|
96 |
+
# self attention of target
|
97 |
+
output = layers[-2](target_embd, attention_mask, return_att=False,
|
98 |
+
query_states=target_embd, relative_pos=relative_pos,
|
99 |
+
rel_embeddings=encoder.get_rel_embedding())
|
100 |
+
causal_outputs.append(output)
|
101 |
+
# cross attention
|
102 |
+
output = layers[-1](output, attention_mask, return_att=False,
|
103 |
+
query_states=query_states, relative_pos=relative_pos,
|
104 |
+
rel_embeddings=encoder.get_rel_embedding())
|
105 |
+
causal_outputs.append(output)
|
106 |
+
|
107 |
+
else:
|
108 |
+
causal_outputs = [encoder_layers[-1]]
|
109 |
+
lm_outputs = [encoder_layers[-1]]
|
110 |
+
return causal_outputs, lm_outputs
|
111 |
+
|
112 |
+
|
113 |
+
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
114 |
+
"""
|
115 |
+
Shift input ids one token to the right.
|
116 |
+
"""
|
117 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
118 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
119 |
+
shifted_input_ids[:, 0] = decoder_start_token_id
|
120 |
+
|
121 |
+
if pad_token_id is None:
|
122 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
123 |
+
# replace possible -100 values in labels by `pad_token_id`
|
124 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
125 |
+
|
126 |
+
return shifted_input_ids
|
127 |
+
|
128 |
+
|
129 |
+
class WywLMLoss(torch.nn.Module):
|
130 |
+
def __init__(self, config) -> None:
|
131 |
+
super().__init__()
|
132 |
+
self.loss_fn = torch.nn.CrossEntropyLoss(reduction='mean')
|
133 |
+
hidden_size = getattr(config, 'embedding_size', config.hidden_size)
|
134 |
+
self.compare = torch.nn.Linear(hidden_size * 3, 2)
|
135 |
+
# self.mlm_head = BertLMPredictionHead(config, config.vocab_size)
|
136 |
+
self.lm_head = BertLMPredictionHead(config, config.vocab_size)
|
137 |
+
|
138 |
+
def forward(self, logits, lm_logits, target_ids, dict_pos, input_ids, target_ids_s2s, decode=False, ebd_weight=None, task=0):
|
139 |
+
loss_compare = torch.tensor(0).to(logits).float()
|
140 |
+
mlm_loss = torch.tensor(0).to(logits).float()
|
141 |
+
lm_loss = torch.tensor(0).to(logits).float()
|
142 |
+
|
143 |
+
# else:
|
144 |
+
if task == 1:
|
145 |
+
compare_logits = []
|
146 |
+
compare_labels = []
|
147 |
+
for bi, sampel_pos in enumerate(dict_pos):
|
148 |
+
num_pos = int((sampel_pos > 0).sum().detach().cpu().numpy() / 4) - 1
|
149 |
+
if num_pos <= 1:
|
150 |
+
continue
|
151 |
+
for pi in range(num_pos):
|
152 |
+
pos = sampel_pos[pi]
|
153 |
+
entry_logits = logits[bi][pos[0]: pos[1]]
|
154 |
+
desc_logits = logits[bi][pos[2]: pos[3]]
|
155 |
+
neg_num = random.randint(0, num_pos) # torch.randint(low=0, high=num_pos, size=(1,))
|
156 |
+
ids_neg = input_ids[bi][sampel_pos[neg_num][0]: sampel_pos[neg_num][1]]
|
157 |
+
ids_pos = input_ids[bi][pos[0]: pos[1]]
|
158 |
+
if neg_num == pi or (ids_neg.shape == ids_pos.shape and torch.all(ids_neg == ids_pos)):
|
159 |
+
neg_num = -1
|
160 |
+
for ni in range(num_pos):
|
161 |
+
neg_num = random.randint(0, num_pos)# torch.randint(low=0, high=num_pos, size=(1,))
|
162 |
+
ids_neg = input_ids[bi][sampel_pos[neg_num][0]: sampel_pos[neg_num][1]]
|
163 |
+
if neg_num != pi and (ids_neg.shape != ids_pos.shape or not torch.all(ids_neg == ids_pos)):
|
164 |
+
break
|
165 |
+
else:
|
166 |
+
neg_num = -1
|
167 |
+
if neg_num == -1:
|
168 |
+
continue
|
169 |
+
neg_desc_logits = logits[bi][sampel_pos[neg_num][2]: sampel_pos[neg_num][3]]
|
170 |
+
if torch.any(torch.isnan(neg_desc_logits)):
|
171 |
+
print('error')
|
172 |
+
entry_logits = entry_logits.mean(dim=0, keepdim=True).float()
|
173 |
+
desc_logits = desc_logits.mean(dim=0, keepdim=True).float()
|
174 |
+
neg_desc_logits = neg_desc_logits.mean(dim=0, keepdim=True).float()
|
175 |
+
compare_logits.append(torch.concat([entry_logits, desc_logits, entry_logits - desc_logits], dim=1))
|
176 |
+
compare_logits.append(torch.concat([entry_logits, neg_desc_logits, entry_logits - neg_desc_logits], dim=1))
|
177 |
+
compare_labels += [1, 0]
|
178 |
+
if len(compare_logits) > 0:
|
179 |
+
compare_logits = torch.concat(compare_logits, dim=0).to(logits.dtype)
|
180 |
+
compare_pred = self.compare(compare_logits)
|
181 |
+
loss_compare = self.loss_fn(compare_pred, torch.tensor(compare_labels, dtype=torch.long, device=compare_logits.device)).mean()
|
182 |
+
|
183 |
+
if torch.all(loss_compare == 0):
|
184 |
+
entry_logits = logits[0][0].unsqueeze(0)
|
185 |
+
compare_logits = torch.concat([entry_logits, entry_logits, entry_logits - entry_logits], dim=1)
|
186 |
+
compare_pred = self.compare(compare_logits)
|
187 |
+
compare_labels = [1]
|
188 |
+
loss_compare = self.loss_fn(compare_pred, torch.tensor(compare_labels, dtype=torch.long, device=compare_logits.device)).mean()
|
189 |
+
|
190 |
+
# if decode:
|
191 |
+
# lm_labels = target_ids_s2s.index_select(0, (target_ids_s2s.sum(-1) > 0).nonzero().view(-1)[0])
|
192 |
+
# lm_labels = lm_labels.repeat(logits.shape[0], 1).clone().view(-1)
|
193 |
+
# lm_labels = target_ids_s2s.clone()
|
194 |
+
# target_ids_s2s = shift_tokens_right(target_ids_s2s, 0, 1)
|
195 |
+
# target_ids_s2s.masked_fill_(target_ids_s2s==0, 3)
|
196 |
+
if task == 0:
|
197 |
+
_mask_index = (target_ids_s2s > 0).view(-1).nonzero().view(-1)
|
198 |
+
lm_logits_ = flatten_states(lm_logits, _mask_index)
|
199 |
+
lm_pred = self.lm_head(lm_logits_, ebd_weight).float()
|
200 |
+
lm_labels = target_ids_s2s.clone().reshape(-1)
|
201 |
+
lm_labels = lm_labels.index_select(0, _mask_index)
|
202 |
+
# lm_pred = torch.nn.functional.log_softmax(lm_pred)
|
203 |
+
# lm_loss = torch.nn.functional.nll_loss(lm_pred, lm_labels.long())
|
204 |
+
lm_loss = self.loss_fn(lm_pred, lm_labels.long())
|
205 |
+
# dot = register_hooks(lm_loss)
|
206 |
+
# lm_loss.backward()
|
207 |
+
# dot().save('tmp.dot')
|
208 |
+
|
209 |
+
|
210 |
+
_mask_index = (target_ids > 0).view(-1).nonzero().view(-1)
|
211 |
+
mlm_logits = flatten_states(logits, _mask_index)
|
212 |
+
mlm_pred = self.lm_head(mlm_logits, ebd_weight).float()
|
213 |
+
mlm_labels = target_ids.view(-1)
|
214 |
+
mlm_labels = mlm_labels.index_select(0, _mask_index)
|
215 |
+
mlm_loss = self.loss_fn(mlm_pred, mlm_labels.long())
|
216 |
+
return loss_compare, mlm_loss, lm_loss
|
217 |
+
|
218 |
+
class WywLM(torch.nn.Module):
|
219 |
+
""" DeBERTa encoder
|
220 |
+
This module is composed of the input embedding layer with stacked transformer layers with disentangled attention.
|
221 |
+
|
222 |
+
Parameters:
|
223 |
+
config:
|
224 |
+
A model config class instance with the configuration to build a new model. The schema is similar to `BertConfig`, \
|
225 |
+
for more details, please refer :class:`~DeBERTa.deberta.ModelConfig`
|
226 |
+
|
227 |
+
pre_trained:
|
228 |
+
The pre-trained DeBERTa model, it can be a physical path of a pre-trained DeBERTa model or a released configurations, \
|
229 |
+
i.e. [**base, large, base_mnli, large_mnli**]
|
230 |
+
|
231 |
+
"""
|
232 |
+
|
233 |
+
def __init__(self, config=None, pre_trained=None):
|
234 |
+
super().__init__()
|
235 |
+
state = None
|
236 |
+
if pre_trained is not None:
|
237 |
+
state, model_config = load_model_state(pre_trained)
|
238 |
+
if config is not None and model_config is not None:
|
239 |
+
for k in config.__dict__:
|
240 |
+
if k not in ['hidden_size',
|
241 |
+
'intermediate_size',
|
242 |
+
'num_attention_heads',
|
243 |
+
'num_hidden_layers',
|
244 |
+
'vocab_size',
|
245 |
+
'max_position_embeddings']:
|
246 |
+
model_config.__dict__[k] = config.__dict__[k]
|
247 |
+
config = copy.copy(model_config)
|
248 |
+
self.embeddings = BertEmbeddings(config)
|
249 |
+
self.encoder = BertEncoder(config)
|
250 |
+
self.config = config
|
251 |
+
self.pre_trained = pre_trained
|
252 |
+
self.apply_state(state)
|
253 |
+
|
254 |
+
def forward(self, input_ids, attention_mask=None, token_type_ids=None, output_all_encoded_layers=True, position_ids = None, return_att = False):
|
255 |
+
"""
|
256 |
+
Args:
|
257 |
+
input_ids:
|
258 |
+
a torch.LongTensor of shape [batch_size, sequence_length] \
|
259 |
+
with the word token indices in the vocabulary
|
260 |
+
|
261 |
+
attention_mask:
|
262 |
+
an optional parameter for input mask or attention mask.
|
263 |
+
|
264 |
+
- If it's an input mask, then it will be torch.LongTensor of shape [batch_size, sequence_length] with indices \
|
265 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max \
|
266 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when \
|
267 |
+
a batch has varying length sentences.
|
268 |
+
|
269 |
+
- If it's an attention mask then it will be torch.LongTensor of shape [batch_size, sequence_length, sequence_length]. \
|
270 |
+
In this case, it's a mask indicate which tokens in the sequence should be attended by other tokens in the sequence.
|
271 |
+
|
272 |
+
token_type_ids:
|
273 |
+
an optional torch.LongTensor of shape [batch_size, sequence_length] with the token \
|
274 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to \
|
275 |
+
a `sentence B` token (see BERT paper for more details).
|
276 |
+
|
277 |
+
output_all_encoded_layers:
|
278 |
+
whether to output results of all encoder layers, default, True
|
279 |
+
|
280 |
+
Returns:
|
281 |
+
|
282 |
+
- The output of the stacked transformer layers if `output_all_encoded_layers=True`, else \
|
283 |
+
the last layer of stacked transformer layers
|
284 |
+
|
285 |
+
- Attention matrix of self-attention layers if `return_att=True`
|
286 |
+
|
287 |
+
|
288 |
+
Example::
|
289 |
+
|
290 |
+
# Batch of wordPiece token ids.
|
291 |
+
# Each sample was padded with zero to the maxium length of the batch
|
292 |
+
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
293 |
+
# Mask of valid input ids
|
294 |
+
attention_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
295 |
+
|
296 |
+
# DeBERTa model initialized with pretrained base model
|
297 |
+
bert = DeBERTa(pre_trained='base')
|
298 |
+
|
299 |
+
encoder_layers = bert(input_ids, attention_mask=attention_mask)
|
300 |
+
|
301 |
+
"""
|
302 |
+
|
303 |
+
if attention_mask is None:
|
304 |
+
attention_mask = torch.ones_like(input_ids)
|
305 |
+
if token_type_ids is None:
|
306 |
+
token_type_ids = torch.zeros_like(input_ids)
|
307 |
+
token_mask = torch.ones_like(input_ids)
|
308 |
+
else:
|
309 |
+
idxs = torch.flip(torch.cumsum(torch.flip(token_type_ids, [-1]), axis=1), [-1])
|
310 |
+
token_mask = idxs > 0
|
311 |
+
token_mask = token_mask.byte()
|
312 |
+
ebd_output = self.embeddings(input_ids.to(torch.long), token_type_ids.to(torch.long), position_ids, token_mask)
|
313 |
+
embedding_output = ebd_output['embeddings']
|
314 |
+
encoder_output = self.encoder(embedding_output,
|
315 |
+
attention_mask,
|
316 |
+
output_all_encoded_layers=output_all_encoded_layers, return_att = return_att)
|
317 |
+
encoder_output.update(ebd_output)
|
318 |
+
return encoder_output
|
319 |
+
|
320 |
+
def apply_state(self, state = None):
|
321 |
+
""" Load state from previous loaded model state dictionary.
|
322 |
+
|
323 |
+
Args:
|
324 |
+
state (:obj:`dict`, optional): State dictionary as the state returned by torch.module.state_dict(), default: `None`. \
|
325 |
+
If it's `None`, then will use the pre-trained state loaded via the constructor to re-initialize \
|
326 |
+
the `DeBERTa` model
|
327 |
+
"""
|
328 |
+
if self.pre_trained is None and state is None:
|
329 |
+
return
|
330 |
+
if state is None:
|
331 |
+
state, config = load_model_state(self.pre_trained)
|
332 |
+
self.config = config
|
333 |
+
|
334 |
+
prefix = ''
|
335 |
+
for k in state:
|
336 |
+
if 'embeddings.' in k:
|
337 |
+
if not k.startswith('embeddings.'):
|
338 |
+
prefix = k[:k.index('embeddings.')]
|
339 |
+
break
|
340 |
+
|
341 |
+
missing_keys = []
|
342 |
+
unexpected_keys = []
|
343 |
+
error_msgs = []
|
344 |
+
self._load_from_state_dict(state, prefix = prefix, local_metadata=None, strict=True, missing_keys=missing_keys, unexpected_keys=unexpected_keys, error_msgs=error_msgs)
|
345 |
+
|
346 |
+
|
347 |
+
class MaskedLanguageModel(NNModule):
|
348 |
+
""" Masked language model
|
349 |
+
"""
|
350 |
+
def __init__(self, config, *wargs, **kwargs):
|
351 |
+
super().__init__(config)
|
352 |
+
self.backbone = WywLM(config)
|
353 |
+
|
354 |
+
self.max_relative_positions = getattr(config, 'max_relative_positions', -1)
|
355 |
+
self.position_buckets = getattr(config, 'position_buckets', -1)
|
356 |
+
if self.max_relative_positions <1:
|
357 |
+
self.max_relative_positions = config.max_position_embeddings
|
358 |
+
# self.mlm_predictions = UGDecoder(self.backbone.config, self.backbone.embeddings.word_embeddings.weight.size(0))
|
359 |
+
self.lm_predictions = UGDecoder(self.backbone.config, self.backbone.embeddings.word_embeddings.weight.size(0))
|
360 |
+
self.device = None
|
361 |
+
self.loss = WywLMLoss(config)
|
362 |
+
# self.loss_lm = WywLMLoss(config)
|
363 |
+
self.apply(self.init_weights)
|
364 |
+
|
365 |
+
def forward(self, samples, position_ids=None):
|
366 |
+
task = samples['task']
|
367 |
+
if task == 0:
|
368 |
+
input_ids = samples['s2s_input_ids']
|
369 |
+
type_ids = samples['s2s_token_type_ids']
|
370 |
+
attention_mask = samples['s2s_attention_mask']
|
371 |
+
labels = samples['s2s_masked_lm_labels']
|
372 |
+
dict_pos = samples['dict_pos']
|
373 |
+
s2s_label = samples['s2s_label']
|
374 |
+
else:
|
375 |
+
input_ids = samples['input_ids']
|
376 |
+
type_ids = samples['token_type_ids']
|
377 |
+
attention_mask = samples['attention_mask']
|
378 |
+
labels = samples['masked_lm_labels']
|
379 |
+
dict_pos = samples['dict_pos']
|
380 |
+
s2s_label = samples['s2s_label']
|
381 |
+
|
382 |
+
if self.device is None:
|
383 |
+
self.device = list(self.parameters())[0].device
|
384 |
+
|
385 |
+
input_ids = input_ids.to(self.device)
|
386 |
+
|
387 |
+
type_ids = None
|
388 |
+
lm_labels = labels.to(self.device)
|
389 |
+
s2s_label = s2s_label.to(self.device)
|
390 |
+
attention_mask = attention_mask.to(self.device)
|
391 |
+
|
392 |
+
encoder_output = self.backbone(input_ids, attention_mask, type_ids, output_all_encoded_layers=True, position_ids = position_ids)
|
393 |
+
encoder_layers = encoder_output['hidden_states']
|
394 |
+
z_states = encoder_output['position_embeddings']
|
395 |
+
ctx_layer = encoder_layers[-1]
|
396 |
+
mlm_loss = torch.tensor(0).to(ctx_layer).float()
|
397 |
+
lm_loss = torch.tensor(0).to(ctx_layer).float()
|
398 |
+
lm_logits = None
|
399 |
+
label_inputs = None
|
400 |
+
loss = torch.tensor(0).to(ctx_layer).float()
|
401 |
+
loss_compare = torch.tensor(0).to(ctx_layer).float()
|
402 |
+
|
403 |
+
ebd_weight = self.backbone.embeddings.word_embeddings.weight
|
404 |
+
lm_logits, mlm_logits = self.lm_predictions(encoder_layers, self.backbone.embeddings.word_embeddings,
|
405 |
+
input_ids, z_states,
|
406 |
+
attention_mask, self.backbone.encoder,
|
407 |
+
target_ids=lm_labels)
|
408 |
+
# if lm_labels.detach().sum() != 0:
|
409 |
+
loss_compare, mlm_loss, lm_loss = self.loss(mlm_logits,
|
410 |
+
lm_logits,
|
411 |
+
lm_labels,
|
412 |
+
dict_pos,
|
413 |
+
target_ids_s2s=s2s_label,
|
414 |
+
decode=False,
|
415 |
+
ebd_weight=ebd_weight,
|
416 |
+
input_ids=input_ids,
|
417 |
+
task=task)
|
418 |
+
loss = loss_compare * 10 + mlm_loss + lm_loss
|
419 |
+
# if s2s_label.detach().sum() != 0:
|
420 |
+
# s2s_idx = (s2s_label.sum(-1)>0).nonzero().view(-1)
|
421 |
+
# s2s_label = s2s_label.index_select(0, s2s_idx)
|
422 |
+
# # ebd_weight = self.backbone.embeddings.word_embeddings.weight
|
423 |
+
# # lm_logits = self.lm_predictions(encoder_layers[-3], self.backbone.embeddings.word_embeddings,
|
424 |
+
# # input_ids.index_select(0, s2s_idx), z_states.index_select(0, s2s_idx),
|
425 |
+
# # attention_mask.index_select(0, s2s_idx), self.backbone.encoder,
|
426 |
+
# # target_ids=s2s_label,
|
427 |
+
# # decode=True, s2s_idx=s2s_idx)
|
428 |
+
# # lm_logits = encoder_layers[-1].detach().index_select(0, s2s_idx)
|
429 |
+
# _, lm_loss = self.loss_lm(lm_logits,
|
430 |
+
# s2s_label,
|
431 |
+
# torch.zeros_like(dict_pos),
|
432 |
+
# decode=True,
|
433 |
+
# ebd_weight=ebd_weight,
|
434 |
+
# input_ids=input_ids.index_select(0, s2s_idx))
|
435 |
+
# lm_loss = lm_logits.max()
|
436 |
+
# loss = loss + lm_loss
|
437 |
+
|
438 |
+
return {
|
439 |
+
'logits' : lm_logits,
|
440 |
+
'labels' : lm_labels,
|
441 |
+
's2s_label': s2s_label,
|
442 |
+
'loss' : loss.float(),
|
443 |
+
'loss_compare': loss_compare.float(),
|
444 |
+
'lm_loss': lm_loss.float(),
|
445 |
+
'mlm_loss': mlm_loss.float()
|
446 |
+
}
|