|
import json |
|
import copy |
|
|
|
__all__=['AbsModelConfig', 'ModelConfig'] |
|
|
|
class AbsModelConfig(object): |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def from_dict(cls, json_object): |
|
"""Constructs a `ModelConfig` from a Python dictionary of parameters.""" |
|
config = cls() |
|
for key, value in json_object.items(): |
|
if isinstance(value, dict): |
|
value = AbsModelConfig.from_dict(value) |
|
config.__dict__[key] = value |
|
return config |
|
|
|
@classmethod |
|
def from_json_file(cls, json_file): |
|
"""Constructs a `ModelConfig` from a json file of parameters.""" |
|
with open(json_file, "r", encoding='utf-8') as reader: |
|
text = reader.read() |
|
return cls.from_dict(json.loads(text)) |
|
|
|
def __repr__(self): |
|
return str(self.to_json_string()) |
|
|
|
def to_dict(self): |
|
"""Serializes this instance to a Python dictionary.""" |
|
output = copy.deepcopy(self.__dict__) |
|
return output |
|
|
|
def to_json_string(self): |
|
"""Serializes this instance to a JSON string.""" |
|
def _json_default(obj): |
|
if isinstance(obj, AbsModelConfig): |
|
return obj.__dict__ |
|
return json.dumps(self.__dict__, indent=2, sort_keys=True, default=_json_default) + "\n" |
|
|
|
class ModelConfig(AbsModelConfig): |
|
"""Configuration class to store the configuration of a :class:`~DeBERTa.deberta.DeBERTa` model. |
|
|
|
Attributes: |
|
hidden_size (int): Size of the encoder layers and the pooler layer, default: `768`. |
|
num_hidden_layers (int): Number of hidden layers in the Transformer encoder, default: `12`. |
|
num_attention_heads (int): Number of attention heads for each attention layer in |
|
the Transformer encoder, default: `12`. |
|
intermediate_size (int): The size of the "intermediate" (i.e., feed-forward) |
|
layer in the Transformer encoder, default: `3072`. |
|
hidden_act (str): The non-linear activation function (function or string) in the |
|
encoder and pooler. If string, "gelu", "relu" and "swish" are supported, default: `gelu`. |
|
hidden_dropout_prob (float): The dropout probabilitiy for all fully connected |
|
layers in the embeddings, encoder, and pooler, default: `0.1`. |
|
attention_probs_dropout_prob (float): The dropout ratio for the attention |
|
probabilities, default: `0.1`. |
|
max_position_embeddings (int): The maximum sequence length that this model might |
|
ever be used with. Typically set this to something large just in case |
|
(e.g., 512 or 1024 or 2048), default: `512`. |
|
type_vocab_size (int): The vocabulary size of the `token_type_ids` passed into |
|
`DeBERTa` model, default: `-1`. |
|
initializer_range (int): The sttdev of the _normal_initializer for |
|
initializing all weight matrices, default: `0.02`. |
|
relative_attention (:obj:`bool`): Whether use relative position encoding, default: `False`. |
|
max_relative_positions (int): The range of relative positions [`-max_position_embeddings`, `max_position_embeddings`], default: -1, use the same value as `max_position_embeddings`. |
|
padding_idx (int): The value used to pad input_ids, default: `0`. |
|
position_biased_input (:obj:`bool`): Whether add absolute position embedding to content embedding, default: `True`. |
|
pos_att_type (:obj:`str`): The type of relative position attention, it can be a combination of [`p2c`, `c2p`, `p2p`], e.g. "p2c", "p2c|c2p", "p2c|c2p|p2p"., default: "None". |
|
|
|
|
|
""" |
|
def __init__(self): |
|
"""Constructs ModelConfig. |
|
|
|
""" |
|
|
|
self.hidden_size = 768 |
|
self.num_hidden_layers = 12 |
|
self.num_attention_heads = 12 |
|
self.hidden_act = "gelu" |
|
self.intermediate_size = 3072 |
|
self.hidden_dropout_prob = 0.1 |
|
self.attention_probs_dropout_prob = 0.1 |
|
self.max_position_embeddings = 512 |
|
self.type_vocab_size = 0 |
|
self.initializer_range = 0.02 |
|
self.layer_norm_eps = 1e-7 |
|
self.padding_idx = 0 |
|
self.vocab_size = -1 |
|
|