File size: 8,256 Bytes
23fe031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e64bfa
23fe031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e64bfa
23fe031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Copyright (c) Microsoft, Inc. 2020
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#
# Zhou Bo
# Date: 01/15/2020
#

import math
from packaging import version
import torch
from torch.nn import LayerNorm

if version.Version(torch.__version__) >= version.Version('1.0.0'):
  from torch import _softmax_backward_data as _softmax_backward_data
else:
  from torch import softmax_backward_data as _softmax_backward_data

__all__ = ['StableDropout', 'MaskedLayerNorm', 'XSoftmax', 'ACT2FN', 'LayerNorm']


class XSoftmax(torch.autograd.Function):
  """ Masked Softmax which is optimized for saving memory

  Args:
      
    input (:obj:`torch.tensor`): The input tensor that will apply softmax.
    mask (:obj:`torch.IntTensor`): The mask matrix where 0 indicate that element will be ignored in the softmax caculation.
    dim (int): The dimenssion that will apply softmax.
    
  Example::

    import torch
    from DeBERTa.deberta import XSoftmax
    # Make a tensor
    x = torch.randn([4,20,100])
    # Create a mask
    mask = (x>0).int()
    y = XSoftmax.apply(x, mask, dim=-1)
      
  """

  @staticmethod
  def forward(self, input, mask, dim):
    """
    """

    self.dim = dim
    if mask is None:
      mask = torch.ones_like(input)
    if version.Version(torch.__version__) >= version.Version('1.2.0a'):
      rmask = ~(mask.bool())
    else:
      rmask = (1-mask).byte() # This line is not supported by Onnx tracing.

    output = input.masked_fill(rmask, torch.finfo(input.dtype).min) # float('-inf')
    output = torch.softmax(output, self.dim)
    output.masked_fill_(rmask, 0)
    self.save_for_backward(output)
    return output

  @staticmethod
  def backward(self, grad_output):
    """
    """

    output, = self.saved_tensors
    if '1.11' in torch.__version__:
      inputGrad = _softmax_backward_data(grad_output, output, self.dim, output.dtype)
    else:
      inputGrad = _softmax_backward_data(grad_output, output, self.dim, output.dtype)
    return inputGrad, None, None

  @staticmethod
  def symbolic(g, self, mask, dim):
      import torch.onnx.symbolic_helper as sym_help
      from torch.onnx.symbolic_opset9 import masked_fill, softmax

      mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx['Long'])
      r_mask = g.op("Cast", g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value), to_i=sym_help.cast_pytorch_to_onnx['Byte'])
      output = masked_fill(g, self, r_mask, g.op("Constant", value_t=torch.tensor(float('-inf'))))
      output = softmax(g, output, dim)
      return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.uint8)))

class DropoutContext(object):
  def __init__(self):
    self.dropout = 0
    self.mask = None
    self.scale = 1
    self.reuse_mask = True

def get_mask(input, local_context):
  if not isinstance(local_context, DropoutContext):
    dropout = local_context
    mask = None
  else:
    dropout = local_context.dropout
    dropout *= local_context.scale
    mask = local_context.mask if local_context.reuse_mask else None

  if dropout>0 and mask is None:
    if version.Version(torch.__version__) >= version.Version('1.2.0a'):
      mask=(1-torch.empty_like(input).bernoulli_(1-dropout)).bool()
    else:
      mask=(1-torch.empty_like(input).bernoulli_(1-dropout)).byte()
  
  if isinstance(local_context, DropoutContext):
    if local_context.mask is None:
      local_context.mask = mask

  return mask, dropout


class XDropout(torch.autograd.Function):
  @staticmethod
  def forward(ctx, input, local_ctx):
    mask, dropout = get_mask(input, local_ctx)
    ctx.scale=1.0/(1-dropout)
    if dropout>0:
      ctx.save_for_backward(mask)
      return input.masked_fill(mask, 0)*ctx.scale
    else:
      return input

  @staticmethod
  def backward(ctx, grad_output):
    if ctx.scale > 1:
      mask, = ctx.saved_tensors
      return grad_output.masked_fill(mask, 0)*ctx.scale, None
    else:
      return grad_output, None

class StableDropout(torch.nn.Module):
  """ Optimized dropout module for stabilizing the training

  Args:

    drop_prob (float): the dropout probabilities

  """

  def __init__(self, drop_prob):
    super().__init__()
    self.drop_prob = drop_prob
    self.count = 0
    self.context_stack = None

  def forward(self, x):
    """ Call the module

    Args:
      
      x (:obj:`torch.tensor`): The input tensor to apply dropout


    """
    if self.training and self.drop_prob>0:
      return XDropout.apply(x, self.get_context())
    return x

  def clear_context(self):
    self.count = 0
    self.context_stack = None

  def init_context(self, reuse_mask=True, scale = 1):
    if self.context_stack is None:
      self.context_stack = []
    self.count = 0
    for c in self.context_stack:
      c.reuse_mask = reuse_mask
      c.scale = scale

  def get_context(self):
    if self.context_stack is not None:
      if self.count >= len(self.context_stack):
        self.context_stack.append(DropoutContext())
      ctx = self.context_stack[self.count]
      ctx.dropout = self.drop_prob
      self.count += 1
      return ctx
    else:
      return self.drop_prob

def MaskedLayerNorm(layerNorm, input, mask = None):
  """ Masked LayerNorm which will apply mask over the output of LayerNorm to avoid inaccurate updatings to the LayerNorm module.
  
  Args:
    layernorm (:obj:`~DeBERTa.deberta.LayerNorm`): LayerNorm module or function
    input (:obj:`torch.tensor`): The input tensor
    mask (:obj:`torch.IntTensor`): The mask to applied on the output of LayerNorm where `0` indicate the output of that element will be ignored, i.e. set to `0`

  Example::

    # Create a tensor b x n x d
    x = torch.randn([1,10,100])
    m = torch.tensor([[1,1,1,0,0,0,0,0,0,0]], dtype=torch.int)
    LayerNorm = DeBERTa.deberta.LayerNorm(100)
    y = MaskedLayerNorm(LayerNorm, x, m)

  """
  output = layerNorm(input).to(input)
  if mask is None:
    return output
  if mask.dim()!=input.dim():
    if mask.dim()==4:
      mask=mask.squeeze(1).squeeze(1)
    mask = mask.unsqueeze(2)
  mask = mask.to(output.dtype)
  return output*mask

def gelu(x):
  """Implementation of the gelu activation function.
    For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
    0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
  """
  return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
  return x * torch.sigmoid(x)

def linear_act(x):
  return x

def sequence_masking(x, mask, value=0, axis=None):
    """为序列条件mask的函数
    mask: 形如(batch_size, seq_len)的0-1矩阵;
    value: mask部分要被替换成的值,可以是'-inf'或'inf';
    axis: 序列所在轴,默认为1;
    """
    if mask is None:
        return x
    else:
        x_dtype = x.dtype
        if x_dtype == torch.bool:
            x = x.to(torch.int32)
        # if mask.dtype != x.dtype:
        #     mask = mask.to(x.dtype)
        if value == '-inf':
            value = -float('inf')
        elif value == 'inf':
            value = float('inf')
        if axis is None:
            axis = 1
        elif axis < 0:
            axis = x.dim() + axis
        assert axis > 0, 'axis must be greater than 0'
        if mask.dim() != x.dim():
            mask = align(mask, [0, axis], x.dim())
        # value = value.to(x.dtype)
        x = x.masked_fill_(~mask.bool(), value) # * mask + mask.fill_(value)
        if x_dtype == torch.bool:
            x = x.to(torch.bool)
        return x

def align(tensor, axes, ndim=None):
    """重新对齐tensor(批量版expand_dims)
    axes:原来的第i维对齐新tensor的第axes[i]维;
    ndim:新tensor的维度。
    """
    assert len(axes) == tensor.dim()
    assert ndim or min(axes) >= 0
    ndim = ndim or max(axes) + 1
    indices = [None] * ndim
    for i in axes:
        indices[i] = slice(None)
    return tensor[indices]

ACT2FN = {"gelu": torch.nn.functional.gelu, "relu": torch.nn.functional.relu, "swish": swish, "tanh": torch.tanh, "linear": linear_act, 'sigmoid': torch.sigmoid, 'silu': torch.nn.functional.silu}